• Title/Summary/Keyword: Robot Management

Search Result 382, Processing Time 0.026 seconds

Development Plan of Safety Management on Intelligent Robot (지능형 로봇에 대한 안전관리 발전방안)

  • Ju, Il-Yeop
    • Korean Security Journal
    • /
    • no.26
    • /
    • pp.89-119
    • /
    • 2011
  • The purpose of this study is to progress the development plan of safety management on the intelligent robot through safety analysis on the intelligent robot, major present condition of safety management on the intelligent robot, enforcement method of safety management on the intelligent robot. The following is the result of the study. First, we have to establish the provision or the special legislation to regulate the safety management of the intelligent robot substantially in the intelligent robot development and supply promotion law, the enforcement ordinance, the enforcement regulation. And, we should propel to establish the provision on the safety management of the intelligent robot in the laws related on ethics and safety. Second, we should establish the Robot Ethical Charter through the national and international agreement to give a guarantee against the safety management of the intelligent robot. Furthermore, we have to induces people's interest on the safety management of the intelligent robot through offering the public information of the Robot Ethical Charter for coexistence of human and robot and have to understand about rights of the intelligent robot. Third, the security industry and learned circles have to recognize the important effect that the intelligent robot gets in the security industry and try to grope the safety management and the application plan on the intelligent robot. Also, the security industry and learned circles should concern not only using and managing of the intelligent robot including the military robot, the security robot but also protecting human from the intelligent robot.

  • PDF

Design and Implementation of Web-based Software Engineering Tool for Robot (웹 기반 로봇 소프트웨어 공학 도구 설계 및 구현)

  • Hong, Chang-Ho;Park, Hong-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.908-915
    • /
    • 2011
  • As the requirement of user for robot functionality, the function and interface for controlling the robot system is more sophisticated and complicated. Accordingly development process of robot is more complicated and it takes much longer time to develop a robot system. Software development using project management tool is more important in software engineering because of the complexity of software, especially robot system. This paper proposes SEED (Software Engineering Equipment for Development), which is a web-based and integrated software engineering tool to provide independent tools for robot software development. SEED includes the document management tool, the software configuration management tool, the software testing tool on developing robot software and provide a functionality of collaborated and remote development due to WEB-based operations.

Method of network connection management in module based personal robot for fault-tolerant (모듈기반 퍼스널 로봇의 결함 허용 지원을 위한 네트워크 연결 유지 관리 기법)

  • Choi, Dong-Hee;Park, Hong-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.300-302
    • /
    • 2006
  • Middleware offers function that user application program can transmit data independently of network device. Connection management about network connection of module is important for normal service of module base personal robot. Unpredictable network disconnection is influenced to whole robot performance in module base personal robot. For this, Middleware must be offer two important function. The first is function of error detection and reporting about abnormal network disconnection. Therefore, middleware need method for network error detection and module management to consider special quality that each network device has. The second is the function recovering that makes the regular service possible. When the module closed from connection reconnects, as this service reports connection state of the corresponding module, the personal robot resumes the existing service. In this paper proposed method of network connection management for to support fault tolerant about network error of network module based personal robot.

  • PDF

Implementation of Tele-Robot System for Remote Home-Management (원격 가정 관리용 텔레로봇 시스템 구현)

  • 윤창배;김형석;채희성
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2779-2782
    • /
    • 2003
  • A tole-robot system for remote home-management has been developed. The tele-robot system is composed of a mobile robot system, server-computers and client-computers. The robot system is equipped with wireless camera and wireless controller so that the robot system captures the image remotely User makes the robot control command referring to the image feedback through internet. With such tole-robot system, the user can monitor and watch the inside of home by remotely maneuvering the mobile robot. The user can also save the received image of suspected scene on the client computer. Utilizing such function of tele-robot system, remote home-management and possible crime avoidance could be achieved.

  • PDF

A Study on the Map-Building of a Cleaning Robot Base upon the Optimal Cost Function (청소로봇의 최적비용함수를 고려한 지도 작성에 관한 연구)

  • Kang, Jin Gu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.3
    • /
    • pp.39-45
    • /
    • 2009
  • In this paper we present a cleaning robot system for an autonomous mobile robot. Our robot performs goal reaching tasks into unknown indoor environments by using sensor fusion. The robot's operation objective is to clean floor or any other applicable surface and to build a map of the surrounding environment for some further purpose such as finding the shortest path available. Using its cleaning robot system for an autonomous mobile robot can move in various modes and perform dexterous tasks. Performance of the cleaning robot system is better than a fixed base redundant robot in avoiding singularity and obstacle. Sensor fusion using the clean robot improves the performance of the robot with redundant freedom in workspace and Map-Building. In this paper, Map-building of the cleaning robot has been studied using sensor fusion. A sequence of this alternating task execution scheme enables the clean robot to execute various tasks efficiently. The proposed algorithm is experimentally verified and discussed with a cleaning robot, KCCR.

A task-oriented programming system (공정 지향적인 프로그래밍 시스템)

  • 박홍석
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.249-252
    • /
    • 1996
  • This paper presents an algorithmic approach used in the development of a task-level off-line programming system for the efficient applicaiton of robot. In the method, robot tasks are graphically described with manipulation functions. By applying robot language these graphic robot tasks are converted into commands for the robot. A programming example demonstrates the potentiality of task-oriented robot programming.

  • PDF

Redundant Architectural Design of Hydraulic Control System for Reliability Improvement of Underwater Construction Robot (수중건설로봇의 유압 제어 안정성 향상을 위한 이중화 설계)

  • Lee, Jung-Woo;Park, Jeong-Woo;Suh, Jin-Ho;Choi, Young-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.380-385
    • /
    • 2015
  • In the development of an underwater construction robot, the reliability of the operating system is the most important issue because of its huge maintenance cost, especially in a deep sea application. In this paper, we propose a new redundant architectural design for the hydraulic control system of an underwater construction robot. The proposed architecture consists of dual independent modular redundancy management systems linked with a commercial profibus network. A cold standby redundancy management system consisting of a preprocessing switch circuit is applied to the signal network, and a hot standby redundancy management system is adapted to utilize two main controllers.

Health Monitoring and Efficient Data Management Method for the Robot Software Components (로봇 소프트웨어 컴포넌트의 실행 모니터링/효율적인 데이터 관리방안)

  • Kim, Jong-Young;Yoon, Hee-Byung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1074-1081
    • /
    • 2011
  • As robotics systems are becoming more complex there is the need to promote component based robot development, where systems can be constructed as the composition and integration of reusable building block. One of the most important challenges facing component based robot development is safeguarding against software component failures and malfunctions. The health monitoring of the robot software is most fundamental factors not only to manage system at runtime but also to analysis information of software component in design phase of the robot application. And also as a lot of monitoring events are occurred during the execution of the robot software components, a simple data treatment and efficient memory management method is required. In this paper, we propose an efficient events monitoring and data management method by modeling robot software component and monitoring factors based on robot software framework. The monitoring factors, such as component execution runtime exception, Input/Output data, execution time, checkpoint-rollback are deduced and the detail monitoring events are defined. Furthermore, we define event record and monitor record pool suitable for robot software components and propose a efficient data management method. To verify the effectiveness and usefulness of the proposed approach, a monitoring module and user interface has been implemented using OPRoS robot software framework. The proposed monitoring module can be used as monitoring tool to analysis the software components in robot design phase and plugged into self-healing system to monitor the system health status at runtime in robot systems.

A RFID-Based Multi-Robot Management System Available in Indoor Environments (실내 환경에서 운영 가능한 RFID 기반 멀티 로봇 관리 시스템)

  • An, Sang-Sun;Shin, Sung-Oog;Lee, Jeong-Oog;Baik, Doo-Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.13-24
    • /
    • 2008
  • The multi robot operation technique has emerged as one of the most important research subjects that focus on minimizing redundancy in space exploration and maximizing the efficiency of operation. For an efficient operation of the multi robot systems, the movement of each Single robot in the multi robot systems should be properly observed and controlled. This paper suggests Multi Robot Management System to minimize redundancy in space exploration by assigning exploration space to each robot efficiently to take advantage of the RFID. Also, this paper has suggested fault tolerance technique that detects disable Single robot and substitute it by activated Single robot in order to ensure overall exploration and improve efficiency of exploration. Proposed system overcomes previous fault that it is difficult for central server to detect exact position of robot by using RFID system and Home Robot. Designated Home robot manages each Single robot efficiently and assigns the best suited space to Single robot by using RFID Tag Information. Proposed multi robot management system uses RFID for space assignment, Localization and Mapping efficiently and not only maximizes the efficiency of operation, but also ensures reliability by supporting fault-tolerance, compared with Single robot system. Also, through simulation, this paper proves efficiency of spending time and redundancy rates between multi robot management applied by proposed system and not applied by proposed system.

  • PDF

THE DEVELOPMENT OF A CURTAIN WALL INSTALLATION ROBOT THROUGH THE ANALYSIS OF EXISTING CONSTRUCTION PROCESSES

  • Seung-Nam Yu ;Chong-Ho Choi ;Seung-Yel Lee;Chang-Soo Han
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.520-526
    • /
    • 2005
  • Automation in construction has been restricted to special classes of tasks. Curtain walls can be handled like standard construction materials; they are heavy but breakable, and are large but require precise installation. These characteristics make the installation of curtain walls ideal for robotic automation. There are two methods for developing construction robots: The first is approving the robot performance and applying it to the current construction methods. The second is admitting the limitation of the current robot technology and trying to optimize the current method of construction to apply the robot system. In this study, we derived the performance requirements of a curtain wall-installation robot. We also tested this robot at a real construction site and evaluated its performance. Finally, the results were analyzed, and we proposed additional research.

  • PDF