• 제목/요약/키워드: Robot Learning

검색결과 856건 처리시간 0.028초

강화학습 Q-learning 기반 복수 행위 학습 램프 로봇 (Multi Behavior Learning of Lamp Robot based on Q-learning)

  • 권기현;이형봉
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권1호
    • /
    • pp.35-41
    • /
    • 2018
  • 강화학습기반 Q-learning 알고리즘은 이산적인 상태와 액션의 조합을 사용하여, 한 번에 하나의 행위에 대한 목표를 학습하는데 유용하다. 여러 액션을 학습하기 위해서는 행위 기반 아키텍처를 적용하고 적절한 행위 조절 방법을 사용하면 로봇으로 하여금 빠르고 신뢰성 있는 액션을 가능하게 할 수 있다. Q-learning은 인기 있는 강화학습 방법으로 단순하고, 수렴성이 있고 사전 훈련 환경에 영향을 덜 받는 특성(off-policy)으로 인해 로봇 학습에 많이 사용되고 있다. 본 논문에서는 Q-learning 알고리즘을 램프 로봇에 적용하여 복수 행위(사람인식, 책상의 물체 인식)를 학습시키는데 사용하였다. Q-learning의 학습속도(learning rate)는 복수 행위 학습 단계의 로봇 성능에 영향을 줄 수 있으므로 학습속도 변경을 통해 최적의 복수 행위 학습 모델을 제시한다.

학습기반 뉴로-퍼지 시스템을 이용한 휴머노이드 로봇의 지능보행 모델링 (Intelligent Walking Modeling of Humanoid Robot Using Learning Based Neuro-Fuzzy System)

  • 박귀태;김동원
    • 제어로봇시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.358-364
    • /
    • 2007
  • Intelligent walking modeling of humanoid robot using learning based neuro-fuzzy system is presented in this paper. Walking pattern, trajectory of the zero moment point (ZMP) in a humanoid robot is used as an important criterion for the balance of the walking robots but its complex dynamics makes robot control difficult. In addition, it is difficult to generate stable and natural walking motion for a robot. To handle these difficulties and explain empirical laws of the humanoid robot, we are modeling practical humanoid robot using neuro-fuzzy system based on the two types of natural motions which are walking trajectories on a t1at floor and on an ascent. Learning based neuro-fuzzy system employed has good learning capability and computational performance. The results from neuro-fuzzy system are compared with previous approach.

Multiple Reward Reinforcement learning control of a mobile robot in home network environment

  • Kang, Dong-Oh;Lee, Jeun-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1300-1304
    • /
    • 2003
  • The following paper deals with a control problem of a mobile robot in home network environment. The home network causes the mobile robot to communicate with sensors to get the sensor measurements and to be adapted to the environment changes. To get the improved performance of control of a mobile robot in spite of the change in home network environment, we use the fuzzy inference system with multiple reward reinforcement learning. The multiple reward reinforcement learning enables the mobile robot to consider the multiple control objectives and adapt itself to the change in home network environment. Multiple reward fuzzy Q-learning method is proposed for the multiple reward reinforcement learning. Multiple Q-values are considered and max-min optimization is applied to get the improved fuzzy rule. To show the effectiveness of the proposed method, some simulation results are given, which are performed in home network environment, i.e., LAN, wireless LAN, etc.

  • PDF

테이블 균형맞춤 작업이 가능한 Q-학습 기반 협력로봇 개발 (Cooperative Robot for Table Balancing Using Q-learning)

  • 김예원;강보영
    • 로봇학회논문지
    • /
    • 제15권4호
    • /
    • pp.404-412
    • /
    • 2020
  • Typically everyday human life tasks involve at least two people moving objects such as tables and beds, and the balancing of such object changes based on one person's action. However, many studies in previous work performed their tasks solely on robots without factoring human cooperation. Therefore, in this paper, we propose cooperative robot for table balancing using Q-learning that enables cooperative work between human and robot. The human's action is recognized in order to balance the table by the proposed robot whose camera takes the image of the table's state, and it performs the table-balancing action according to the recognized human action without high performance equipment. The classification of human action uses a deep learning technology, specifically AlexNet, and has an accuracy of 96.9% over 10-fold cross-validation. The experiment of Q-learning was carried out over 2,000 episodes with 200 trials. The overall results of the proposed Q-learning show that the Q function stably converged at this number of episodes. This stable convergence determined Q-learning policies for the robot actions. Video of the robotic cooperation with human over the table balancing task using the proposed Q-Learning can be found at http://ibot.knu.ac.kr/videocooperation.html.

자율 이동 로봇의 주행을 위한 영역 기반 Q-learning (Region-based Q- learning For Autonomous Mobile Robot Navigation)

  • 차종환;공성학;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.174-174
    • /
    • 2000
  • Q-learning, based on discrete state and action space, is a most widely used reinforcement Learning. However, this requires a lot of memory and much time for learning all actions of each state when it is applied to a real mobile robot navigation using continuous state and action space Region-based Q-learning is a reinforcement learning method that estimates action values of real state by using triangular-type action distribution model and relationship with its neighboring state which was defined and learned before. This paper proposes a new Region-based Q-learning which uses a reward assigned only when the agent reached the target, and get out of the Local optimal path with adjustment of random action rate. If this is applied to mobile robot navigation, less memory can be used and robot can move smoothly, and optimal solution can be learned fast. To show the validity of our method, computer simulations are illusrated.

  • PDF

표정 피드백을 이용한 딥강화학습 기반 협력로봇 개발 (Deep Reinforcement Learning-Based Cooperative Robot Using Facial Feedback)

  • 전해인;강정훈;강보영
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.264-272
    • /
    • 2022
  • Human-robot cooperative tasks are increasingly required in our daily life with the development of robotics and artificial intelligence technology. Interactive reinforcement learning strategies suggest that robots learn task by receiving feedback from an experienced human trainer during a training process. However, most of the previous studies on Interactive reinforcement learning have required an extra feedback input device such as a mouse or keyboard in addition to robot itself, and the scenario where a robot can interactively learn a task with human have been also limited to virtual environment. To solve these limitations, this paper studies training strategies of robot that learn table balancing tasks interactively using deep reinforcement learning with human's facial expression feedback. In the proposed system, the robot learns a cooperative table balancing task using Deep Q-Network (DQN), which is a deep reinforcement learning technique, with human facial emotion expression feedback. As a result of the experiment, the proposed system achieved a high optimal policy convergence rate of up to 83.3% in training and successful assumption rate of up to 91.6% in testing, showing improved performance compared to the model without human facial expression feedback.

Co-Operative Strategy for an Interactive Robot Soccer System by Reinforcement Learning Method

  • Kim, Hyoung-Rock;Hwang, Jung-Hoon;Kwon, Dong-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권2호
    • /
    • pp.236-242
    • /
    • 2003
  • This paper presents a cooperation strategy between a human operator and autonomous robots for an interactive robot soccer game, The interactive robot soccer game has been developed to allow humans to join into the game dynamically and reinforce entertainment characteristics. In order to make these games more interesting, a cooperation strategy between humans and autonomous robots on a team is very important. Strategies can be pre-programmed or learned by robots themselves with learning or evolving algorithms. Since the robot soccer system is hard to model and its environment changes dynamically, it is very difficult to pre-program cooperation strategies between robot agents. Q-learning - one of the most representative reinforcement learning methods - is shown to be effective for solving problems dynamically without explicit knowledge of the system. Therefore, in our research, a Q-learning based learning method has been utilized. Prior to utilizing Q-teaming, state variables describing the game situation and actions' sets of robots have been defined. After the learning process, the human operator could play the game more easily. To evaluate the usefulness of the proposed strategy, some simulations and games have been carried out.

실외에서 로봇의 인간 탐지 및 행위 학습을 위한 멀티모달센서 시스템 및 데이터베이스 구축 (Multi-modal Sensor System and Database for Human Detection and Activity Learning of Robot in Outdoor)

  • 엄태영;박정우;이종득;배기덕;최영호
    • 한국멀티미디어학회논문지
    • /
    • 제21권12호
    • /
    • pp.1459-1466
    • /
    • 2018
  • Robots which detect human and recognize action are important factors for human interaction, and many researches have been conducted. Recently, deep learning technology has developed and learning based robot's technology is a major research area. These studies require a database to learn and evaluate for intelligent human perception. In this paper, we propose a multi-modal sensor-based image database condition considering the security task by analyzing the image database to detect the person in the outdoor environment and to recognize the behavior during the running of the robot.

효과적인 인간-로봇 상호작용을 위한 딥러닝 기반 로봇 비전 자연어 설명문 생성 및 발화 기술 (Robot Vision to Audio Description Based on Deep Learning for Effective Human-Robot Interaction)

  • 박동건;강경민;배진우;한지형
    • 로봇학회논문지
    • /
    • 제14권1호
    • /
    • pp.22-30
    • /
    • 2019
  • For effective human-robot interaction, robots need to understand the current situation context well, but also the robots need to transfer its understanding to the human participant in efficient way. The most convenient way to deliver robot's understanding to the human participant is that the robot expresses its understanding using voice and natural language. Recently, the artificial intelligence for video understanding and natural language process has been developed very rapidly especially based on deep learning. Thus, this paper proposes robot vision to audio description method using deep learning. The applied deep learning model is a pipeline of two deep learning models for generating natural language sentence from robot vision and generating voice from the generated natural language sentence. Also, we conduct the real robot experiment to show the effectiveness of our method in human-robot interaction.

Q-learning과 Cascade SVM을 이용한 군집로봇의 행동학습 및 진화 (Behavior Learning and Evolution of Swarm Robot System using Q-learning and Cascade SVM)

  • 서상욱;양현창;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제19권2호
    • /
    • pp.279-284
    • /
    • 2009
  • 군집 로봇시스템에서 개개의 로봇은 스스로 주위의 환경과 자신의 상태를 스스로 판단하여 행동하고, 필요에 따라서는 다른 로봇과 협조를 통하여 어떤 주어진 일을 수행할 수 있어야 한다. 따라서 개개의 로봇은 동적으로 변화하는 환경에 잘 적응할 수 있는 학습과 진화능력을 갖는 것이 필수적이다. 본 논문에서는 SVM을 여러 개 이용한 강화학습과 분산유전알고리즘을 이용한 새로운 자율이동로봇의 행동학습 및 진화학습을 제안한다. 또한 개개의 로봇이 통신을 통하여 염색체를 교환하는 분산유전알고리즘은 각기 다른 환경에서 학습한 우수한 염색체로부터 자신의 능력을 향상시킨다. 특히 본 논문에서는 진화의 성능을 향상시키기 위하여 Cascade SVM을 기반으로 한 강화학습의 특성을 이용한 선택 교배방법을 채택하였다.