• Title/Summary/Keyword: Robot Kinematics

Search Result 410, Processing Time 0.038 seconds

Study on Development of a machining robot using Parallel mechanism

  • Park, Kun-Woo;Kim, Tae-Sung;Lee, Min-Ki;Kyung, Jin-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.638-642
    • /
    • 2005
  • This research develops the robot for the machining work. For machining work(cutting, milling, grilling, etc.), a robot manipulator is constructed by combining a parallel and a serial mechanism to increase stiffness as well as enlarge workspace. Based on the geometric constraints, this paper develops the formulation for inverse/direct kinematics and Jacobian to design and control a robot. Workspace is also analyzed to prove the advantage of the proposed robot.

  • PDF

A Study on the Kinematics of Mobile Robot with Joint-actuator (관절구동기와 바퀴를 가진 이동로봇에 대한 기구학 연구)

  • Ryu, Shin-Hyuug;Lee, Sung-Ryul;Lee, Ki-Chul;Park, Mig-Non
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.72-75
    • /
    • 2001
  • In this paper, the kinematic model and motion control of a joint-actuated mobile robot are analyzed. To take an efficient approach to the wheeled mobile robots, the relationship between wheel rotation and the contact point of the wheel is considered. It is shown that each addition of a joint to a mobile robot increases the degree of freedom(DOF) of mobile robot, and the way of joint attachment to a mobile robot is proposed. To get a solution of inverse kinematics of mobile robot, two types of approaches are proposed.

  • PDF

The Efficient Motion Teaching Method of Quadruped Robot Using Graphic Simulator and Physics Engine (그래픽 시뮬레이터와 물리엔진을 이용한 효과적인 4족 보행로봇의 모션티칭 방법)

  • Ryu, Ji-Hyoung;Kim, Jee-Hong;Lee, Chan-Goo;Yi, Soo-Yeong
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.156-158
    • /
    • 2009
  • A graphic simulator is efficient to see what will happen to the target robot. But it is not exactly same as the real world. Because there are so many physical laws to be concerned. In this paper, we propose a simulator with physics engine to create motions for quadruped robot. It is not only to show more real simulations but also to be more efficient for teaching motions to quadruped robot. To solve the quadruped robot's dynamics or inverse kinematics, It takes much times and hard effort. Using physics engine make it easy to setup motions without calculating inverse kinematics or dynamics.

  • PDF

A Study on Flexible Control of Dual Arm-Mobile Robot for Smart Factory (스마트펙토리를 위한 듀얼암을 갖는 모바일 로봇의 유연제어에 관한 연구)

  • Lee, Woo-Song;Ha, Eun-Tha;Jeong, Yang-Keun;Park, In-Man
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • This study proposes a new approach to design of the robust control application of a mobile manipulator with dual-arm. The mobil manipulator robot system consists of 12 DOF manipulators and a mobile robot. Kinematics of the robotics has been analyzed and simulated to verify reliability. A position-based torque control technique is applied to the robot by adding an outer loop to interact with the environment. Experimental studies of torque control applications of robot arm and interaction with a user operator are conducted. Experimental results has been proved that the robot arm performed regulated to follow the desired reference.

Development of 3 D.O.F parallel robot's simulator for education

  • Yoo, Jae-Myung;Kim, John-Hyeong;Park, Dong-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2290-2295
    • /
    • 2005
  • In this paper, it is developed simulator system of 3 D.O.F parallel robot for educate of expertness. This simulator system is composed of three parts ? 3 D.O.F parallel robot, controller (hardware) and software. First, basic structure of the robot is 3 active rotary actuator that small geared step motor with fixed base. An input-link is connected to this actuator, and this input-link can connect two ball joints. Thus, two couplers can be connected to the input-link as a pair. An end-plate, which is jointed by a ball joint, can be connected to the opposite side of the coupler. A sub-link is produced and installed to the internal spring, and then this sub-link is connected to the upper and bottom side of the coupler in order to prevent a certain bending or deformation of the two couplers. The robot has the maximum diameter of 230 mm, 10 kg of weight (include the table), and maximum height of 300 mm. Hardware for control of the robot is composed of computer, micro controller, pulse generator, and motor driver. The PC used in the controller sends commands to the controller, and transform signals input by the user to the coordinate value of the robot by substituting it into equations of kinematics and inverse kinematics. A controller transfer the coordinate value calculated in the PC to a pulse generator by transforming it into signals. A pulse generator analyzes commands, which include the information received from the micro controller. A motor driver transfer the pulse received from the pulse generator to a step motor, and protects against the over-load of the motor Finally, software is a learning purposed control program, which presents the principle of a robot operation and actual implementation. The benefit of this program is that easy for a novice to use. Developed robot simulator system can be practically applied to understand the principle of parallel mechanism, motors, sensor, and various other parts.

  • PDF

A study on an error recovery expert system in the advanced teleoperator system (지적 원격조작시스템의 일환으로서 에러회복 전문가 시스템에 관한 연구)

  • 이순요;염준규;오제상;이창민
    • Journal of the Ergonomics Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.19-28
    • /
    • 1987
  • If an error occurs in the automatic mode when the advanced teleoperator system performs a task in hostile environment, then the mode changes into the manual mode. The operation by program and the operation by hyman recover the error in the manual mode. The system resumew the automatic mode and continues the given task. In order to utilize the inverse kinematics as means of the operation by program in the manual mode, Lee and Nagamachi determined the end point of the robot trajectory planning which varied with the height of the task object recognized by a T.V monitor, solved the end point by the fuzzy set theory, and controlled the position of the robot hand by the inverse kinematics and the posture of the robot hand by the operation by human. But the operation by human did take a lot of task time because the position and the posture of the robot hand were separately controlled. To reduce the task time by human, this paper developes an error recovery expert system (ERES). The position of the robot hand is controlled by the inverse kinematics of the cartesian coordinate system to the end point which is deter- mined by the fuzzy set theory. The posture of the robot hand is controlled by the modulality of the robot hand's motion which is made by the posture of the task object. The knowledge base and the inference engine of the ERES is developed using the muLISP-86 language. The experimental results show that the average task time by human the ERES which was performed by the integration of the position and the posture control of the robot hand is shorter than that of the research, done by the preliminary experiment, which was performed by the separation of the position and the posture control of the robot hand. A further study is likely to research into an even more intelligent robot system control usint a superimposed display and digitizer which can present two-dimensional coordinate of the work space for the convenience of human interaction.

  • PDF

Integrated Control System Design of SCARA Robot Based on Off-Line Programming (오프라인 프로그래밍을 이용한 스카라 로봇의 통합제어 시스템 설계)

  • 한덕기;김휘동;조흥식;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.398-403
    • /
    • 2002
  • We developed a Off-Line Graphic Simulator which can simulate a robot model in 3D graphics space in Windows 95 version. 4 axes SCARA robot was adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed program. The interface between users and the off-line program system in the Windows 95's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D graphics.

  • PDF

Localization of Mobile Robot using Ultrasonic Sensor Network (초음파 센서 네트워크를 이용한 이동로봇의 위치 및 헤딩 추정)

  • Cheon, Hyo-Seok;Hwang, Keun-Woo;Park, Seung-Kyu;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1844-1845
    • /
    • 2011
  • In this paper, we compared several localization methods for indoor mobile robot navigation using a global ultrasonic sensor network. To estimate the pose of mobile robot in the sensor network, the range or range difference information with or without robot kinematics is used. Simulation results showed that the localization methods with robot kinematics have better performances.

  • PDF

Walk Simulations of a Biped Robot

  • Lim, S.;Kim, K.I.;Son, Y.I.;Kang, H.I.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2132-2137
    • /
    • 2005
  • This paper is concerned with computer simulations of a biped robot walking in dynamic gaits. To this end, a three-dimensional robot is considered possessing a torso and two identical legs of a kinematically ingenious design. Specific walking patterns are off-line generated meeting stability based on the ZMP condition. Subsequently, to verify whether the robot can walk as planned, a multi-body dynamics CAE code has been applied to the corresponding joint motions determined by inverse kinematics. In this manner, complex mass effects could be accurately evaluated for the robot model. As a result, key parameters to successful gaits are identified including inherent characteristics as well. Also, joint actuator capacities are found required to carry out those gaits.

  • PDF

Design and Realization of a Small Humanoid Robot (소형 휴머노이드(SERO-VI) 로봇 설계 및 구현)

  • Lee, Bo-Hee;Jun, Jae-Min;Kim, Ki-Woo;Park, Sung-Chul;Oh, Jun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.255-257
    • /
    • 2005
  • This paper deals with the design and the realization of a small humanoid robot, which is called SERO_VI. The design concept and the mechanical structure including kinematics for the robot are presented. The humanoid robot consisted of 25 DOF with legs 12 DOF, arms 8 DOF, waists 3 DOF and heads 2 DOF for the purpose of vision system. The controller structure was also suggested such as modular joint actuators, DSP interface and their communication method. Simple experiment was done and its validness was investigated in order to verify the kinematic result.

  • PDF