• 제목/요약/키워드: Robot Joint

Search Result 891, Processing Time 0.027 seconds

Development of Manipulator for Vertically Moving Multi-Joint Apple Harvesting Robot(I) -Design.Manusacturing- (수직 다관절 사과수확로봇의 매니퓰레이터 개발 (I) -설계.제작-)

  • 장익주
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.399-408
    • /
    • 2000
  • This study is final focused on developing fruit harvesting robot can distinguish fruit type and status accurately. Multi-joint robot is able to discriminate tree shape and select mature fruit by image processing. The multi-joint robot consists of (a) rotating base, (b)turning first joint-arm, (c)rotating and turning second joint-arm, (d)rotating and turning third joint-arm, (e)rotating and turning last joint and (f)picker hand. The operational ranges of the robot are: horizontal 860~2,220mm, vertical 1,440~2,260mm, 270 degrees’rotation angle, 90 or 270 degrees’turning angle. The robot weighs 330kg. The multi-joint robot was designed in high accuracy and efficiency by getting as close as the movements of human arms and waist.

  • PDF

A Study on Humanoid Robot Control Method Using Zigbee Wireless Servo Motor with Sensor Network

  • Shin, Dae-Seob;Lee, Hyeong-Cheol
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.235-243
    • /
    • 2012
  • In this study, we developed two legged multi-joint robot by using wireless servo motor that was applied by wireless sensor network technology, which is widely used recently, and performed an experiment of walking method of two legged multi-joint robot. We constructed the star network with servo motors which were used at each joint of two-legged robot. And we designed the robot for operation by transmission of joint control signal from main control system or by transmission of the status of each joint to the main control system, so it operates with continuously checking the status of joints at same time. We developed the humanoid robot by using wireless digital servo motor which is different from existing servo motor control system, and controlled it by transmitting the information of angles and speeds of robot joints to the motor(node) as a feedback through main control system after connecting power and setting up the IDs to each joint. We solved noisy problem generated from wire and wire length to connection point of the control device by construction of the wireless network instead of using existing control method of wiring, and also solved problem of poor real time response to gait motion by controlling the position with continuous transmission of control signals to each joint. And we found that the effective control of robot is able by performing the simulation on walking motion in advance with the developed control algorithm which was downloaded into installed memory. Also we performed the stable walking with two-legged robot by attaching pressure sensor to robot sole. And we examined the robot gait operated by application of calculated algorithm on robot movement to each joint. In this study, we studied the method of controlling robot gait motion by using wireless servo motors and measured the torque applied to each joint, and found that the developed wireless servo motor by ZigBee sensor network offers easier control of two legged robot gait and better circuit configuration of it than the existing wired control system could do.

Design of Knee-Pelvis Joint in the Biped Robot for Shock Reduction and Gravity Compensation (충격 감소 및 중력 보상을 위한 이족보행로봇의 무릎-골반 관절 설계)

  • Kim, Young-Min;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.136-142
    • /
    • 2015
  • In the paper, a design method of knee and pelvis joint in the biped robot is proposed for shock absorption and gravity compensation. Similarly to the human's body, the knee joints of the biped robot support most body weight and get a shock from the landing motion of the foot on the floor. The torque of joint motor is also increased sharply to keep the balance of the robot. Knee and pelvis joints with the spring are designed to compensate the gravity force and reduce the contact shock of the robot. To verify the efficiency of the proposed design method, we develope a biped robot with the joint mechanism using springs. At first, we experiment with the developed robot on the static motions such as the bent-knee posture both without load and with load on the flat ground, and the balance posture on the incline plane. The current of knee joint is measured to analyze the impact force and energy consumption of the joint motors. Also, we observe the motor current of knee and pelvis joints for the walking motion of the biped robot. The current responses of joint motors show that the proposed method has an effect on shock reduction and gravity compensation, and improve the energy efficiency of walking motions for the biped robot.

A Study on a Gravity Compensator for the Robot Arm (로봇팔을 위한 중력보상기 연구)

  • Choi, Hyeung-Sik;Kim, Dong-Ho;Her, Jea-Gwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.226-232
    • /
    • 2009
  • In this paper, a design and analysis of a gravity compensator which is a new device to reduce the joint torque of robots caused due to gravity is presented. Joints of all robots are loaded by large torques due to gravity. By applying the gravity compensator to the robot joints, the load torques applied to the robot joints are reduced by the repulsive force of the gravity compensator such that the size of the joint actuation motor can be reduced. In this paper, the structure and force relation of the gravity compensator are analyzed. The superior performance of the proposed gravity compensator is verified through experiments which measure the joint motor current caused by the load applied to the robot link.

Exact Reshaping of Motor Dynamics in Flexible-Joint Robot using Integral Manifold Feedback Control (유연관절로봇의 모터 동역학을 정확하게 재설정하기 위한 적분매니폴드 피드백제어 개발)

  • Park, Young-Jin;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.20-27
    • /
    • 2014
  • In this paper, an exact reshaping method for the motor dynamics of a flexible-joint robot is proposed using an integral manifold approach. Obtaining the exact model for both motor-side and link-side dynamics of a flexible-joint robot is difficult due to its under-actuated nature and complex dynamics. Despite the simple structure of the motor-side dynamics, they are difficult to model accurately for a flexible-joint robot due to motor disturbances, especially when speed reducers such as harmonic drives are installed. An integral manifold feedback control (IMFC) is proposed to reshape the motor dynamics. Based on the integral manifold approach, it is theoretically proved that the IMFC reshapes motor dynamics exactly even with bounded disturbances such as motor friction. The performance of the proposed IMFC is verified experimentally using a single degree-of-freedom flexible-joint robot under gravity conditions.

Robust Fault-Tolerant Control for a Robot System Anticipating Joint Failures in the Presence of Uncertainties (불확실성의 존재에서 관절 고장을 가지는 로봇 시스템에 대한 강인한 내고장 제어)

  • 신진호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.755-767
    • /
    • 2003
  • This paper proposes a robust fault-tolerant control framework for robot manipulators to maintain the required performance and achieve task completion in the presence of both partial joint failures and complete joint failures and uncertainties. In the case of a complete joint failure or free-swinging joint failure causing the complete loss of torque on a joint, a fully-actuated robot manipulator can be viewed as an underactuated robot manipulator. To detect and identify a complete actuator failure, an on-line fault detection operation is also presented. The proposed fault-tolerant control system contains a robust adaptive controller overcoming partial joint failures based on robust adaptive control methodology, an on-line fault detector detecting and identifying complete joint failures, and a robust adaptive controller overcoming partial and complete joint failures, and so eventually it can face and overcome joint failures and uncertainties. Numerical simulations are conducted to validate the proposed robust fault-tolerant control scheme.

Development of a Bio-mimetic Quadruped Walking Robot with Waist Joint

  • Kim, Dong-Sik;Park, Se-Hoon;Kim, Kyung-Ho;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1530-1534
    • /
    • 2004
  • This paper presents a novel bio-mimetic quadruped walking robot with a waist joint, which connects the front and the rear parts of the body. The new robot, called ELIRO-1(Eating LIzard RObot version 1), can bend its body while the legs is transferred, thereby increasing the stride and speed of the robot. The waist-jointed walking robot can move easily from side to side, which is an important feature to guarantee a larger gait stability margin than that of a conventional single rigid-body walking robot. We design the mechanical structure of the robot, which is small and light to have high movability and high degree of human friendship. In this paper, we describe characteristics of the waist joint and leg mechanism as well as the analysis using ADAMS to select appropriate actuators. In addition, a hardware and software of the controller of ELIRO-1 are described.

  • PDF

Collision-free path planning for an articulated robot (다관절 로보트를 위한 충돌 회피 경로 계획)

  • 박상권;최진섭;김동원
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.629-634
    • /
    • 1995
  • The purpose of this paper is to develop a method of Collision-Free Path Planning (CFPP) for an articulated robot. First, the configuration of the robot is formed by a set of robot joint angles derived fromm robot inverse kinematics. The joint space that is made of the joint angle set, forms a Configuration space (Cspace). Obstacles in the robot workcell are also transformed and mapped into the Cspace, which makes Cobstacles in the Cspace. (The Cobstacles represented in the Cspace is actually the configurations of the robot causing collision.) Secondly, a connected graph, a kind of roadmap, is constructed from the free configurations in the 3 dimensional Cspace, where the configurations are randomly sampled form the free Cspace. Thirdly, robot paths are optimally in order to minimize of the sum of joint angle movements. A path searching algorithm based on A is employed in determining the paths. Finally, the whole procedures for the CFPP method are illustrated with a 3 axis articulated robot. The main characteristics of the method are; 1) it deals with CFPP for an articulated robot in a 3-dimensional workcell, 2) it guarantees finding a collision free path, if such a path exists, 3) it provides distance optimization in terms of joint angle movements. The whole procedures are implemented by C on an IBM compatible 486 PC. GL (Graphic Library) on an IRIS CAD workstation is utilized to produce fine graphic outputs.

  • PDF

Development of a Multi-joint Robot Manipulator for Robot Milking System (로봇 착유시스템을 위한 다관절 매니퓰레이터 개발)

  • Kim W.;Lee D. W.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.5 s.112
    • /
    • pp.293-298
    • /
    • 2005
  • The purpose of this study was the development of a multi-joint robot manipulator for milking robot system. The multi-joint robot manipulator was controlled by 5 drivers with driver controller through the position information obtained from the image processing system. The robot manipulator to automatically attach each teat cup to the teats of a milking cow was developed and it's motion was accurately measured with error rate. Results were as follows. 1. Maximum errors in position accuracy were 4mm along X-axis, 4.5mm along Y-axis and 0.9mm along Z-axis. Absolute distance errors were maximum 4.8mm, minimum 2.7mm, and average 3.6mm. 2. Errors of repeatability were maximum 3.0mm along X-axis, 3.0mm along Y-axis, and 0.5mm along Z-axis. Distance error values were maximum 3.2mm, minimum 2.2mm, and average 2.5mm. It is envisaged that multi-joint robot manipulator can be applicate to milking robot system being developed in consideration of the experiment results.

Exact External Torque Sensing System for Flexible-Joint Robot: Kalman Filter Estimation with Random-Walk Model (유연관절로봇을 위한 정확한 외부토크 측정시스템 개발: 랜덤워크모델을 이용한 칼만필터 기반 추정)

  • Park, Young-Jin;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • In this paper, an external torque estimation problem in one-degree-of-freedom (1-DOF) flexible-joint robot equipped with a joint-torque sensor is revisited. Since a sensor torque from the joint-torque sensor is distorted by two dynamics having a spring connection, i.e., motor dynamics and link dynamics of a flexible-joint robot, a model-based estimation, rather than a simple linear spring model, should be required to extract external torques accurately. In this paper, an external torque estimation algorithm for a 1-DOF flexible-joint robot is proposed. This algorithm estimates both an actuating motor torque from the motor dynamics and an external link torque from the link dynamics simultaneously by utilizing the flexible-joint robot model and the Kalman filter estimation based on random-walk model. The basic structure of the proposed algorithm is explained, and the performance is investigated through a custom-designed experimental testbed for a vertical situation under gravity.