• Title/Summary/Keyword: Robot Framework

Search Result 231, Processing Time 0.027 seconds

Toward the Personal Robot Software Framework (차세대 퍼스널 로봇 소프트웨어 프러임워크에 관한 연구)

  • Kim, Hong-Ryeol;Kim, Dae-Won;Kim, Hong-Seok;Lee, Ho-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2410-2414
    • /
    • 2002
  • In this paper, a software framework is proposed for the personal robot located on home network. The proposed software framework is divided into four layers-a transparency layer, a behavior layer, a distributed task layer, and a mission scenario layer. The transparency layer consists of a virtual machine for platform transparency, and a communication broker for communication transparency among behavior modules. The communication architecture includes both server/client communication and publisher/subscriber communication. A mission scenario is assumed to be a composition of sequentially planned distributed tasks. In addition to the software framework, a new concept, personal robot design center platform as proposed in this paper with its implementation mechanisms. The personal robot design center is defined as a developing and a managing environment for high-level behavior modules, distributed tasks, and mission scenarios.

  • PDF

Task Allocation Framework Incorporated with Effective Resource Management for Robot Team in Search and Attack Mission (탐지 및 공격 임무를 수행하는 로봇팀의 효율적 자원관리를 통한 작업할당방식)

  • Kim, Min-Hyuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2014
  • In this paper, we address a task allocation problem for a robot team that performs a search and attack mission. The robots are limited in sensing and communication capabilities, and carry different types of resources that are used to attack a target. The environment is uncertain and dynamic where no prior information about targets is given and dynamic events unpredictably happen. The goal of robot team is to collect total utilities as much as possible by destroying targets in a mission horizon. To solve the problem, we propose a distributed task allocation framework incorporated with effective resource management based on resource welfare. The framework we propose enables the robot team to retain more robots available by balancing resources among robots, and respond smoothly to dynamic events, which results in system performance improvement.

An Educational Robot Game Framework for Programming Leaning in K-12 (프로그래밍 학습을 위한 교육용 로봇 게임 프레임워크)

  • Kwon, Dai-Young;Shim, Jae-Kwoun;Hur, Kyoung;Lee, Won-Gyu
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.2 no.1
    • /
    • pp.89-94
    • /
    • 2010
  • This paper proposes an educational robot game framework for novice students in k-12 to learn concepts of programming through interesting experiences. It is designed to be able to enjoy robot games without technical knowledge of robotics and programming. For this, in the proposed robot game framework, educational robots based on line-tracer are used and the programming APls that can be used for various educational programming languages are offered. And the proposed robot game framework also offers a game board to create several games with easy operations. Additionally, through experiments, it shows that novice students are able to create different games that have several game solutions for various programming using this robot game framework.

  • PDF

Modeling & Simulation Framework for the Efficient Development of a Rescue Robot (효율적인 구조로봇 개발을 위한 통합 M&S 프레임워크)

  • Park, Gyuhyun
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.149-158
    • /
    • 2019
  • This paper introduces an integrated Modeling & Simulation framework for the efficient development of the rescue robot which rescues a wounded patients or soldiers and disposes a dangerous objects or explosive materials in the battlefields and disastrous environments. An integrated M&S(Modeling & Simulation) framework would have enabled us to perform the dynamic simulation program GAZEBO based Software-in-the-Loop Simulation(SILS) which is to replacing the robot platform hardware with a simulation software. An integrated M&S framework would help us to perform designing robot and performance validation of robot control results more efficiently. Furthermore, Tele-operation performance in the unstructured environments could be improved. We review a case study of applying an integrated M&S framework tool in validating performance of mobility stabilization control, one of the most important control strategy in the rescue robot.

Robot Knowledge Framework of a Mobile Robot for Object Recognition and Navigation (이동 로봇의 물체 인식과 주행을 위한 로봇 지식 체계)

  • Lim, Gi-Hyun;Suh, Il-Hong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.6
    • /
    • pp.19-29
    • /
    • 2007
  • This paper introduces a robot knowledge framework which is represented with multiple classes, levels and layers to implement robot intelligence at real environment for mobile robot. Our root knowledge framework consists of four classes of knowledge (KClass), axioms, rules, a hierarchy of three knowledge levels (KLevel) and three ontology layers (OLayer). Four KClasses including perception, model, activity and context class. One type of rules are used in a way of unidirectional reasoning. And, the other types of rules are used in a way of bi-directional reasoning. The robot knowledge framework enable a robot to integrate robot knowledge from levels of its own sensor data and primitive behaviors to levels of symbolic data and contextual information regardless of class of knowledge. With the integrated knowledge, a robot can have any queries not only through unidirectional reasoning between two adjacent layers but also through bidirectional reasoning among several layers even with uncertain and partial information. To verify our robot knowledge framework, several experiments are successfully performed for object recognition and navigation.

Template Components for Service Integration of Networked Robot (네트워크 로봇의 서비스 통합을 위한 템플릿 컴포넌트)

  • Kim, Joo-Hyung;Lee, Ho-Dong;Park, Gwi-Tae
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.69-77
    • /
    • 2011
  • In a large scale robot system, one of important problems is software integration, which involves three elements: modularity, reusability and stability. By these issues, the degree of convenience of system integration, its required time and the performance of the system stability can be determined. In addition, the convenience of system management can be determined by the degree of completion of service components. This paper explains the template based service component (TBSC) for the integration of service components in networked robot. The important characteristics of TBSC are automatical execution and recovery process by a PnP supporting robot framework, which helps a system operator to manage a robot system comfortably. For easy implementation and system stability, we provide a service component creator and a verification tool to developers.

Comprehensive architecture for intelligent adaptive interface in the field of single-human multiple-robot interaction

  • Ilbeygi, Mahdi;Kangavari, Mohammad Reza
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.483-498
    • /
    • 2018
  • Nowadays, with progresses in robotic science, the design and implementation of a mechanism for human-robot interaction with a low workload is inevitable. One notable challenge in this field is the interaction between a single human and a group of robots. Therefore, we propose a new comprehensive framework for single-human multiple-robot remote interaction that can form an efficient intelligent adaptive interaction (IAI). Our interaction system can thoroughly adapt itself to changes in interaction context and user states. Some advantages of our devised IAI framework are lower workload, higher level of situation awareness, and efficient interaction. In this paper, we introduce a new IAI architecture as our comprehensive mechanism. In order to practically examine the architecture, we implemented our proposed IAI to control a group of unmanned aerial vehicles (UAVs) under different scenarios. The results show that our devised IAI framework can effectively reduce human workload and the level of situation awareness, and concurrently foster the mission completion percentage of the UAVs.

Functionally Classified Framework based Navigation System for Indoor Service Robots (기능별로 분류된 프레임워크에 기반한 실내용 이동로봇의 주행시스템)

  • Park, Joong-Tae;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.720-727
    • /
    • 2009
  • This paper proposes a new integrated navigation system for a mobile robot in indoor environments. This system consists of five frameworks which are classified by function. This architecture can make the navigation system scalable and flexible. The robot can recover from exceptional situations, such as environmental changes, failure of entering the narrow path, and path occupation by moving objects, using the exception recovery framework. The environmental change can be dealt with using the probabilistic approach, and the problems with the narrow path and path occupation are solved using the ray casting algorithm and the Bayesian update rule. The proposed navigation system was successfully applied to several robots and operated in various environments. Experimental results showed good performance in that the exception recovery framework significantly increased the success rate of navigation. The system architecture proposed in this paper can reduce the time for developing robot applications through its reusability and changeability.

Framework of a Cooperative Control Software for Heterogeneous Multiple Network Based Humanoid (이종 다수의 네트워크 기반 휴머노이드를 위한 협조제어 소프트웨어 프레임워크)

  • Lim, Heon-Young;Kang, Yeon-Sik;Lee, Joong-Jae;Kim, Jong-Won;You, Bum-Jae
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.226-236
    • /
    • 2008
  • In this paper, control software architecture is designed to enable a heterogeneous multiple humanoid robot demonstration executing tasks cooperating with each other. In the heterogeneous humanoid robot team, one large humanoid robot and two small humanoid robots are included. For the efficient and reliable information sharing between many software components for humanoid control, sensing and planning, CORBA based software framework is applied. The humanoid tasks are given in terms of finite state diagram based human-robot interface, which is interpreted into the XML based languages defining the details of the humanoid mission. A state transition is triggered based on the event which is described in terms of conditions on the sensor measurements such as robot locations and the external vision system. In the demonstration of the heterogeneous humanoid team, the task of multiple humanoid cleaning the table is given to the humanoid robots and successfully executed based on the given state diagram.

  • PDF

A Motion Planning Algorithm for Synchronizing Spatial Trajectories of Multi-Robots (다수 로봇간 공간궤적 동기화를 위한 모션계획 알고리즘)

  • Jeong Young-Do;Kim Sung-Rak;Lee Choong-Dong;Lim Hyun-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1233-1240
    • /
    • 2004
  • Recently the need for cooperative control among robots is increasing in a variety of industrial robot applications. Such a control framework enhances the efficiency of the real robotic assembly environment along with extending the robot application. In this paper, an ethernet-based cooperative control framework was proposed. The cooperative control of robots can multiply the handling capacity of robot system, and make it possible to implement jigless cooperation, due to realization of trajectory-synchronized movement between a master robot and slave robots. Coordinate transformation was used to relate among robots in a common coordinate. An optimized ethernet protocol of HiNet was developed to maximize the speed of communication and to minimize the error of synchronous movement. The proposed algorithm and optimization of network protocol was tested in several class of robots.