• 제목/요약/키워드: Robot Foot

검색결과 143건 처리시간 0.025초

6축 힘/모멘트센서를 가진 인간형 로봇의 지능형 발 개발 (Development of Humanoid Robot's Intelligent Foot with Six-axis Force/Moment Sensors)

  • 김갑순;김현민;윤정원
    • 한국정밀공학회지
    • /
    • 제26권5호
    • /
    • pp.96-103
    • /
    • 2009
  • This paper describes a humanoid robot's intelligent foot with two six-axis force/moment sensors. The developed humanoid robots didn't get the intelligent feet for walking on uneven surface safely. In order to walk on uneven surface safely, the robot should measure the reaction forces and moments applied on the sales of the feet, and they should be controlled with the measured the forces and moments. In this paper, an intelligent foot for a humanoid robot was developed. First, the body of foot was designed to be rotated the toe and the heel to all directions, second, the six-axis force/moment sensors were manufactured, third, the high-speed controller was manufactured using DSP(digital signal processor), fourth, the humanoid robot's intelligent foot was manufactured using the body of foot, two six-axis force/moment sensors and the high-speed controller, finally, the characteristic test of the intelligent foot was carried out. It is thought that the foot could be used for a humanoid robot.

발가락과 뒤꿈치 조인트를 갖는 유연한 로봇 발 설계 (Design of a Flexible Robot Foot with Toes and Heel Joints)

  • 박진희;김현술;권상주
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.446-454
    • /
    • 2011
  • In terms of the anatomy and mechanics of the human foot, a flexible robot foot with toes and heel joints is designed for a bipedal walking robot. We suggest three design considerations in determining foot design parameters which are critical for walking stability. Those include the position of the frontal toe, the stiffness of toes and heels, and the position of the ankle joint. Compared with the conventional foot with flat sale, the proposed foot is advantageous for human-like walking due to the inherent structural flexibility and the reasonable parameter values. Simulation results are provided to determine the design parameters and also show that the proposed foot enables smaller energy consumption.

인간형 로봇의 지능형 발의 발가락 및 뒤꿈치 힘센서 개발 (Development of Force Sensors of Toes and Heel for Humanoid Robot's Intelligent Foot)

  • 김갑순
    • 한국정밀공학회지
    • /
    • 제27권10호
    • /
    • pp.61-68
    • /
    • 2010
  • In order to let the humanoid robot walk on the uneven terrains, the robot's foot should have the similar structure and function as human's. The intelligent foot should be made up of toes and heel. When it walks on the uneven terrains, the foot's sole senses the force and adjusts foot's position before robot losing his balance. In this paper, the force sensors of robot's intelligent foot for having the similar structure and function like human are developed. The heel 3-axis force/moment sensor and toe force sensors for humanoid robot's intelligent foot is developed, and the characteristic tests of them are carried out. As a result of characteristic test, the interference error of the heel 3-axis force/moment sensor is less than 2.2%. It is thought that the developed force sensors could be used to measure the reaction forces which is applied the toes and the heel of a humanoid robot.

FPE 방식을 활용한 이족 로봇 균형 유지 3차원 시뮬레이션 연구 (3D Simulation Study of Biped Robot Balance Using FPE Method)

  • 장태호;김영식;류봉조
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권4호
    • /
    • pp.815-819
    • /
    • 2018
  • 본 논문에서는 Foot Placement Estimator (FPE)를 사용하여 point foot을 갖는 이족 로봇의 3차원 시뮬레이션을 진행하고 이족로봇의 균형유지를 연구하였다. FPE 방법은 에너지 보존에 근거한 제어 방법으로서 보행 중인 로봇의 모든 에너지가 위치 에너지로 변환되는 지점에 로봇이 발을 디뎌 몸체가 넘어지지 않고 균형을 유지하며 이동하도록 하는 제어방법이다. 본 연구에서는 로봇이 이동하지는 않고 제자리에서 균형을 유지하며 서 있는 시뮬레이션을 진행하였다. 이를 위해 point foot을 갖는 6자유도 이족 로봇을 모델링하였으며 바닥과의 접촉 및 마찰 환경을 구현하였다. 로봇의 무게는 1kg이며 지면과 무게 중심점과의 거리는 1m로, 무게중심점은 로봇 몸체의 정 중앙에 위치하도록 설계하였다. 다음으로 로봇 몸체의 각속도와 직선속도 그리고 무게 중심점의 높이로 부터 FPE 지점을 계산하고 로봇이 해당 지점을 디뎌 균형을 유지하게 끔 하였다. 몸체의 초기 각도를 $5^{\circ}$, $-5^{\circ}$로 변화시키며 시뮬레이션 한 결과, 모든 초기 조건에서 로봇이 쓰러지지 않고 자세의 균형을 유지하며 서 있는 것을 확인할 수 있었다.

평행링크형 발가락을 갖는 4족 보행로봇 발의 비평탄 지면 착지 성능 (Landing Performance of a Quadruped Robot Foot Having Parallel Linked Toes on Uneven Surface)

  • 홍예선;윤승현;김민규
    • 한국정밀공학회지
    • /
    • 제26권10호
    • /
    • pp.47-55
    • /
    • 2009
  • In this study, a robot foot having toes for firm stepping on uneven surface is proposed. The toes are connected to the lower leg by parallel links so that the lower leg can rotate in the rolling and pitching directions during stance phase without ankle joint. The landing performance of the foot on uneven surface was evaluated by relative comparison with that of the most common foot making point contact with the walking surface, since the test conditions considering real uneven surface could be hardly defined for its objective evaluation. Anti-slip margin(ASM) was defined in this study to express the slip resistance of a robot foot when it lands on a projection with half circular-, triangular- or rectangular cross section, assuming that uneven surface consists of projections having these kind of cross sections in different sizes. Based on the ASM analysis, the slip conditions for the two feet were experimentally confirmed. The results showed that the slip resistance of the new foot is not only higher than that of the conventional point contact type foot but also less sensitive to the surface friction coefficient.

Kinect 센서를 이용한 효율적인 사람 추종 로봇의 예측 제어 (Predictive Control of an Efficient Human Following Robot Using Kinect Sensor)

  • 허신녕;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제20권9호
    • /
    • pp.957-963
    • /
    • 2014
  • This paper proposes a predictive control for an efficient human following robot using Kinect sensor. Especially, this research is focused on detecting of foot-end-point and foot-vector instead of human body which can be occluded easily by the obstacles. Recognition of the foot-end-point by the Kinect sensor is reliable since the two feet images can be utilized, which increases the detection possibility of the human motion. Depth image features and a decision tree have been utilized to estimate the foot end-point precisely. A tracking point average algorithm is also adopted in this research to estimate the location of foot accurately. Using the continuous locations of foot, the human motion trajectory is estimated to guide the mobile robot along a smooth path to the human. It is verified through the experiments that detecting foot-end-point is more reliable and efficient than detecting the human body. Finally, the tracking performance of the mobile robot is demonstrated with a human motion along an 'L' shape course.

관절형 4족 보행로봇용 발의 설계 및 성능시험 (Design and performance test of a foot for a jointed leg type quadrupedal walking robot)

  • 홍예선;이수영;류시복;이종원
    • 대한기계학회논문집A
    • /
    • 제21권8호
    • /
    • pp.1250-1258
    • /
    • 1997
  • This paper reports on the development of a new foot for a quadrupedal jointed-leg type walking robot. The foot has 2 toes, one at the front and the other at the rear side, for stable landing on uneven ground by point contact. The toes can move up and down independantly, guided by double-wishbone shaped parallel links which enable the lower leg to rotate with respect to a remote center on the ground surface. The motion of each toe is damped by a hydropneumatic shock absorber integrated in the foot in order to absorb the dynamic landing shock. Furthermore, the new foot can reduce the maximum hip joint drive torque by shortening the moment arm length between the hip joint and the landing force vector on the ground. Intensive experiments were carried out in this study by using a one-leg walking model to investigate the soft landing performance of the foot which could be hardly offered by conventional robot feet such as a flat plate with a gimbal type ankle joint. And it was confirmed that the hip joint torque of the leg walking on the flat surface could be reduced remarkably by using the new foot.

Gait Programming of Quadruped Bionic Robot

  • Li, Mingying;Jia, Chengbiao;Lee, Eung-Joo;Feng, Yiran
    • Journal of Multimedia Information System
    • /
    • 제8권2호
    • /
    • pp.121-130
    • /
    • 2021
  • Foot bionic robot could be supported and towed through a series of discrete footholds and be adapted to rugged terrain through attitude adjustment. The vibration isolation of the robot could decouple the fuselage from foot-end trajectories, thus, the robot walked smoothly even if in a significant terrain. The gait programming and foot end trajectory algorithm were simulated. The quadruped robot of parallel five linkages with eight degrees of freedom were tested. The kinematics model of the robot was established by setting the corresponding coordinate system. The forward and inverse kinematics of both supporting and swinging legs were analyzed, and the angle function of single leg driving joint was obtained. The trajectory planning of both supporting and swinging phases was carried out, based on the control strategy of compound cycloid foot-end trajectory planning algorithm with zero impact. The single leg was simulated in Matlab with the established kinematic model. Finally, the walking mode of the robot was studied according to bionics principles. The diagonal gait was simulated and verified through the foot-end trajectory and the kinematics.

얀센 메커니즘을 적용한 보행 로봇 다리의 운동학 해석

  • 김영두;방정현
    • 한국CDE학회지
    • /
    • 제22권2호
    • /
    • pp.6-10
    • /
    • 2016
  • This paper presents the kinematics of a walking robot leg based on Jansen mechanism. By using simple mathematics, all trajectories of walking robot leg links can be calculated. A foot point trajectory is used to evaluate the performance of a walking robot leg. Trial and Error method is used to find a best combination of link lengths under certain restrictions. All simulations are performed by Matlab. Ground score, drag score, step size, foot lift, instant speed, and average speed of foot point trajectories are used for selecting the best one.

  • PDF

고장 난 다리가 있는 사족 보행 로봇의 평탄 직선보행을 위한 효율적인 다리 힘 배분 알고리즘 (An Efficient Foot-Force Distribution Algorithm for Straight-Line Walking of Quadruped Robots with a Failed Leg)

  • 양정민
    • 전기학회논문지
    • /
    • 제57권5호
    • /
    • pp.896-901
    • /
    • 2008
  • This paper addresses the foot force distribution problem for quadruped robots with a failed leg. The quadruped robot has fault-tolerant straight-line gaits with one leg in locked-joint failure, and has discontinuous motion with respect to the robot body. The proposed method is operated in two folds. When the robot body stands still, we use the feature that there are always three supporting legs, and by incorporating the theory of zero-interaction force, we calculate the foot forces analytically without resort to any optimization technique. When the robot body moves, the conventional pseudo-inverse algorithm is applied to obtain the foot forces for supporting legs. Simulation results show the validity of the proposed scheme.