• 제목/요약/키워드: Robot Energy Source

검색결과 25건 처리시간 0.024초

A Robot System Maintained with Renewable Energy

  • Kim, Jaehyun;Moon, Chanwoo
    • International journal of advanced smart convergence
    • /
    • 제8권1호
    • /
    • pp.98-105
    • /
    • 2019
  • Energy autonomy is a system that is sustained by energy from an independent and distributed source such as renewable energy. In this paper, we propose a robotic energy autonomy in which a robot obtains energy from a renewable energy source with a limited storage capacity. As an energy transfer method, wireless power transfer is used to solve the problem of the conventional contact charging method, mechanical complexity, and to obtain high energy transfer efficiency, the image information is used to align the transmitting and receiving coils accurately. A small scale thermoelectric energy source with boost converter, battery charger, and wireless power transfer coil is constructed and an actual charging experiment is conducted to verify the proposed autonomy system.

소형로봇용 500W급 연료전지 스택무게 최적화 설계 (Design Optimization of a 500W Fuel Cell Stack Weight for Small Robot Applications)

  • 황순욱;최경호;박용헌;;;이상철;권오성;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제32권spc3호
    • /
    • pp.275-281
    • /
    • 2012
  • Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and soon. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.

소형 로봇용 연료 전지 스택 설계 사양 최적화 (Optimization of a Fuel Cell Stack for Small Robot Systems)

  • 황순욱;최경호;박용헌;;;이상철;권오성;이동하
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.211-216
    • /
    • 2012
  • Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and so on. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.

  • PDF

Power System and Drive-Train for Omni-Directional Autonomous Mobile Robots with Multiple Energy Storage Units

  • Ghaderi, Ahmad;Nassiraei, Amir A.F;Sanada, Atsushi;Ishii, Kazuo;Godler, Ivan
    • Journal of Power Electronics
    • /
    • 제8권4호
    • /
    • pp.291-300
    • /
    • 2008
  • In this paper power system and drive-train for omni-directional autonomous mobile robots with multiple energy storage units are presented. Because in proposed system, which is implemented in soccer robots, the ability of power flow control from of multiple separated energy storage units and speed control for each motor are combined, these robots can be derived by more than one power source. This capability, allow robot to diversify its energy source by employing hybrid power sources. In this research Lithium ion polymer batteries have been used for main and auxiliary energy storage units because of their high power and energy densities. And to protect them against deep discharge, over current and short circuit, a protection circuit was designed. The other parts of our robot power system are DC-DC converters and kicker circuit. The simulation and experimental results show proposed scheme and extracted equations are valid and energy management and speed control can be achieved properly using this method. The filed experiments show robot mobility functions to perform the requested motion is enough and it has a high maneuverability in the field.

에너지 효율적 트리로터 수직이착륙 무인항공기 개발 (Development of an Energy Efficient Tri-Rotor Vertical Take Off and Landing Unmanned Aerial Vehicle)

  • 박희진;공동욱;손병락;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제32권spc3호
    • /
    • pp.262-268
    • /
    • 2012
  • In the recent research technical solutions have been studied to integrate renewable energy into unmanned aerial vehicles to use it as the main power source. As the weight of the aerial vehicle body is essential for its performance, we consider to use light-weight solar cell technology. Furthermore fuel cells are also integrated create a highly energy-efficient aerial robot. In this paper, construction concept and software design of the tilt-rotor aerial vehicle GAORI is introduced which uses solar cells and fuel cells as power source. The future work direction and prognosis are discussed.

Minimization of consumption energy for a manipulator with nonlinear friction in PPT motion

  • Izumi, T.;Takase, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.95-99
    • /
    • 1994
  • Robot engineering is developed mainly in the field of intelligibility such as a manipulation. Considering the popularization of robots in the future, however, a robot should be studied from a viewpoint of saving energy because a robot is a kind of machine with a energy conversion. This paper deals with minimizing an energy consumption of a manipulator which is driven in a point-to-point control method. When a manipulator carries a heavy payload toward gravitation or the links are de-accelerated for positioning, the motors at joints generate electric energy. Since this energy can be regenerated to the source by using a chopper, the energy consumption of a manipulator is only heat loss by an electric and a frictional resistance of the motors. The minimization of the sum of these losses is reduced Lo a two-points boundary-value problem of an non-linear differential equation. The solutions are obtained by the generalized Newton-Raphson method in this paper. The energy consumption due to the optimum angular velocity patterns of two joints of a two-links manipulator is compared with conventional velocity patterns such as quadratic and trapezoid.

  • PDF

자율섭취기능을 갖는 바퀴구동형 생체모방로봇 개발 (Development of a Biomimetic Wheeled Robot with Autonomous Eating Functionality)

  • 조익진;이연정
    • 제어로봇시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.573-579
    • /
    • 2006
  • Most of the recently developed robots are human friendly robots which imitate an animal or human such as entertainment robot, biomimetic robot and humanoid robot. Interest in these robots is increased because the social trend is focused on health, welfare, and graying. By these social backgrounds, robots become more human friendly and suitable or home or personal environment. The more biomimetic robots resemble living creature, the more human feels familiarity. Human feels close friendship not only when feeding a pet, but also when watching a pet having the food. Most of entertainment robots and pet robots use internal-type batteries and have a self-recharging function. Entertainment robots and pet robots with internal-type batteries are not able to operate during charging the battery. So far there have been a few robots that do not depend on an internal battery. However, they need a bulky energy conversion unit and a slug or foods as an energy source, which is not suitable for home or personal application. In this paper, we introduce a new biomimetic entertainment robot with autonomous eating functionality, called EPRO-1(Eating Pet RObot version 1). The EPRO-1 is able to eat a food (a small battery), by itself and evacuate. We describe the design concept of the autonomous eating mechanism of the EPRO-1, characteristics of sub-parts of the manufactured mechanism and its control system.

Mobility-Aware Ad Hoc Routing Protocols for Networking Mobile Robot Teams

  • Das, Saumitra M.;Hu, Y. Charlie;Lee, C.S. George;Lu, Yung-Hsiang
    • Journal of Communications and Networks
    • /
    • 제9권3호
    • /
    • pp.296-311
    • /
    • 2007
  • Mobile multi-robot teams are useful in many critical applications such as search and rescue. Explicit communication among robots in such mobile multi-robot teams is useful for the coordination of such teams as well as exchanging data. Since many applications for mobile robots involve scenarios in which communication infrastructure may be damaged or unavailable, mobile robot teams frequently need to communicate with each other via ad hoc networking. In such scenarios, low-overhead and energy-efficient routing protocols for delivering messages among robots are a key requirement. Two important primitives for communication are essential for enabling a wide variety of mobile robot applications. First, unicast communication (between two robots) needs to be provided to enable coordination and data exchange. Second, in many applications, group communication is required for flexible control, organization, and management of the mobile robots. Multicast provides a bandwidth-efficient communication method between a source and a group of robots. In this paper, we first propose and evaluate two unicast routing protocols tailored for use in ad hoc networks formed by mobile multi-robot teams: Mobile robot distance vector (MRDV) and mobile robot source routing (MRSR). Both protocols exploit the unique mobility characteristics of mobile robot networks to perform efficient routing. Our simulation study show that both MRDV and MRSR incur lower overhead while operating in mobile robot networks when compared to traditional mobile ad hoc network routing protocols such as DSR and AODV. We then propose and evaluate an efficient multicast protocol mobile robot mesh multicast (MRMM) for deployment in mobile robot networks. MRMM exploits the fact that mobile robots know what velocity they are instructed to move at and for what distance in building a long lifetime sparse mesh for group communication that is more efficient. Our results show that MRMM provides an efficient group communication mechanism that can potentially be used in many mobile robot application scenarios.

A detector system for searching lost γ-ray source

  • Khan, Waseem;He, Chaohui;Cao, Yu;Khan, Rashid;Yang, Weitao
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1524-1531
    • /
    • 2020
  • The aim of this work is to develop a Geiger-Muller (GM) detector system for robot to look for a radioactive source in case of a nuclear emergency or in a high radiation environment. In order to find a radiation source easily, a detector system, including 3 detectors, was designed to search γ-ray radiation sources autonomously. First, based on GEANT4 simulation, radiation dose rates in 3 Geiger-Muller (GM) counters were simulated at different source-detector distances, distances between detectors and angles. Various sensitivity analyses were performed experimentally to verify the simulated designed detector system. A mono-energetic 137Cs γ-ray source with energy 662 keV and activity of 1.11 GBq was used for the observation. The simulated results were compared with the experimental dose rate values and good agreements were obtained for various cases. Only based on the dose rates in three detectors, the radiation source with a specific source activity and angle was localized in the different location. A method was adopted with the measured dose rates and differences of distances to find the actual location of the lost γ-ray source. The corresponding angles of deviation and detection limits were calculated to determine the sensitivity and abilities of our designed detector system. The proposed system can be used to locate radiation sources in low and high radiation environments.

Development of a Bio-mimetic Entertainment Robot with Autonomous Feeding Functionality

  • Cho, Ik-Jin;Choi, Byoung-Jun;Jeong, Kil-Woong;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1525-1529
    • /
    • 2004
  • Most of the recently developed robots are human friendly robots which imitate an animal or human such as entertainment robot, bio-mimetic robot and humanoid robot. Interest in these robots are increasing since the social trend is focused on health, welfare, and graying. By these social backgrounds, robots become more human friendly and suitable for home or personal environment. The more bio-mimetic robots resemble living creature, the more human feels familiarity. People feel close friendship not only when they feed a pet, but also when they watch a pet having the food. Most of entertainment robots and pet robots use internal-type batteries and have a self-recharging function. Entertainment robots and pet robots with internal-type batteries are not able to operate during charging the battery. So far there have been a few robots that do not depend on a battery. However, they need a bulky energy conversion unit and a slug or foods as an energy source, which is not suitable for home or personal application. In this paper, we introduce a new bio-mimetic entertainment robot with autonomous feeding functionality, called ELIRO-1(Eating LIzard RObot version 1). The ELIRO-1 is able to find a food (a small battery), feed by itself and evacuate. We describe the design concept of the autonomous feeding mechanism of the ELIRO-1, characteristics of sub-parts of the manufactured mechanism and the control system.

  • PDF