• Title/Summary/Keyword: Robot Dynamics

Search Result 569, Processing Time 0.032 seconds

Exact Reshaping of Motor Dynamics in Flexible-Joint Robot using Integral Manifold Feedback Control (유연관절로봇의 모터 동역학을 정확하게 재설정하기 위한 적분매니폴드 피드백제어 개발)

  • Park, Young-Jin;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.20-27
    • /
    • 2014
  • In this paper, an exact reshaping method for the motor dynamics of a flexible-joint robot is proposed using an integral manifold approach. Obtaining the exact model for both motor-side and link-side dynamics of a flexible-joint robot is difficult due to its under-actuated nature and complex dynamics. Despite the simple structure of the motor-side dynamics, they are difficult to model accurately for a flexible-joint robot due to motor disturbances, especially when speed reducers such as harmonic drives are installed. An integral manifold feedback control (IMFC) is proposed to reshape the motor dynamics. Based on the integral manifold approach, it is theoretically proved that the IMFC reshapes motor dynamics exactly even with bounded disturbances such as motor friction. The performance of the proposed IMFC is verified experimentally using a single degree-of-freedom flexible-joint robot under gravity conditions.

Robust Adaptive Fuzzy Backstepping Control for Trajectory Tracking of an Electrically Driven Nonholonomic Mobile Robot with Uncertainties (불확실성을 가지는 전기 구동 논홀로노믹 이동 로봇의 궤적 추종을 위한 강인 적응 퍼지 백스테핑 제어)

  • Shin, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.902-911
    • /
    • 2012
  • This paper proposes a robust adaptive fuzzy backstepping control scheme for trajectory tracking of an electrically driven nonholonomic mobile robot with uncertainties and actuator dynamics. A complete model of an electrically driven nonholonomic mobile robot described in this work includes all models of the uncertain robot kinematics with a nonholonomic constraint, the uncertain robot body dynamics with uncertain frictions and unmodeled disturbances, and the uncertain actuator dynamics with disturbances. The proposed control scheme uses the backstepping control approach through a kinematic controller and a robust adaptive fuzzy velocity tracking controller. The presented control scheme has a voltage control input with an auxiliary current control input rather than a torque control input. It has two FBFNs(Fuzzy Basis Function Networks) to approximate two unknown nonlinear robot dynamic functions and a robust adaptive control input with the proposed adaptive laws to overcome the uncertainties such as parameter uncertainties and external disturbances. The proposed control scheme does not a priori require the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. It can also alleviate the chattering of the control input. Using the Lyapunov stability theory, the stability of the closed-loop robot control system is guaranteed. Simulation results show the validity and robustness of the proposed control scheme.

Robust Adaptive Fuzzy Tracking Control Using a FBFN for a Mobile Robot with Actuator Dynamics (구동기 동역학을 가지는 이동 로봇에 대한 FBFN을 이용한 강인 적응 퍼지 추종 제어)

  • Shin, Jin-Ho;Kim, Won-Ho;Lee, Moon-Noh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.319-328
    • /
    • 2010
  • This paper proposes a robust adaptive fuzzy tracking control scheme for a nonholonomic mobile robot with external disturbances as well as parameter uncertainties in the robot kinematics, the robot dynamics, and the actuator dynamics. In modeling a mobile robot, the actuator dynamics is integrated with the robot kinematics and dynamics so that the actuator input voltages are the control inputs. The presented controller is designed based on a FBFN (Fuzzy Basis Function Network) to approximate an unknown nonlinear dynamic function with the uncertainties, and a robust adaptive input to overcome the uncertainties. When the controller is designed, the different parameters for two actuator models in the actuator dynamics are taken into account. The proposed control scheme does not require the kinematic and dynamic parameters of the robot and actuators accurately. It can also alleviate the input chattering and overcome the unknown friction force. The stability of the closed-loop control system including the kinematic control system is guaranteed by using the Lyapunov stability theory and the presented adaptive laws. The validity and robustness of the proposed control scheme are shown through a computer simulation.

Development of a Robot Design Program (로봇 설계 프로그램 개발)

  • Seo Jong Hwi;Kim Chang Su;Jung Il Ho;Park Tae Won;Kim Hyk;Choi Jae Rak;Byun Kyng Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.87-94
    • /
    • 2005
  • This paper presents the development of a virtual robot design program. Robot design requires numerical software, robot solution software and multi-body dynamics software to complete several designs. However using a commercialized software implies some disadvantages, such as the waste of time and money it costs to learn how to use the software. We developed a virtual robot design program with which a user can design a robot with rapidity and reliability. The virtual robot design program is composed of robot kinematics module and robot dynamics module. The program is powerful software which may be used to solve various problems of a robot. The 3D animator and a 2D/3D graph of the program can analyze the design results into visual data. The virtual robot design program is expected to increase the competitiveness and efficiency of the robot industry.

Dynamics Modeling and Control of a Delta High-speed Parallel Robot (Delta 고속 병렬로봇의 동역학 모델링 및 제어)

  • Kim, Han Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.90-97
    • /
    • 2014
  • This paper presents a simplified dynamics model, dynamics simulations, and computed torque control experiments of the Delta high-speed parallel robot. Using the typical Newton-Euler method, a simplified but accurate dynamics model with practical assumptions is derived. Accuracy and fast calculations of the dynamics are essential in the computed torque control for high-speed applications. It was found that the simplified dynamics equation is in very god agreement with the ADAMS model, and the calculation time of the inverse kinematics and inverse dynamics is about 0.04 msec. From the dynamics simulations, the cycle trajectory along the y-axis requires less peak motor torque and a lower angular velocity and less power than that along the x-axis. The computed torque control scheme can reduce the position error by half as compared to a PD control scheme. Finally, the developed Delta parallel robot prototype, half the size of the ABB Flexpicker robot, can achieve a cycle time of 0.43 sec with a 1.0kg payload.

Adaptive Control of Space Robot in Inertia Space (Inertia Space에서 우주 로봇의 적응제어)

  • Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.381-385
    • /
    • 1992
  • In this paper, dynamic modeling and adaptive control problems for a space robot system are discussed. The space robot consist of a robot manipulator mounted on a free-floating base where no attitude control is applied. Using an extended robot model, the entire space robot can be viewed as an under-actuated robot system. Based on nonlinear control theory, the extended space robot model can then be decomposed into two subsystems: one is input-output exactly linearizable, and the other is unlinearizable and represents an internal dynamics. With this decomposition, a normal form-augmentation approach and an augmented state-feedback control are proposed to facilitate the design of adaptive control for the space robot system against parameter uncertainty, unknown dynamics and unmodeled payload in space applications. We demonstrate that under certain conditions, the entire space robot can be represented as a full-actuated robot system to avoid the inclusion of internal dynamics. Based on the dynamic model, we propose an adaptive control scheme using Cartesian space representation and demonstrate its validity and design procedure by a simulation study.

  • PDF

Real time control of a mobile robot considering dynamics (3축 이동로보트의 동역할을 고려한 실시간 제어)

  • Cha, Y.Y.;Gweon, D.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.190-199
    • /
    • 1993
  • In this study a three-axes mobile robot which has two independently controlled driving wheels and a function of simultaneously steering the driving wheels has been developed. Two-motion modes of the mobile robot, the first is a differential velocity motion of two driving wheels and the second is a equal driving and steering motion, have been analyzed and the kinematic and dymanic analyses about the each motion mode have been carried out. As a result of dynamic analysis, the torque used on a motor control and acceleration have been derived explicitly. Hence, a computation time is saved effectively and a real time control of the mobile robot considering the dynamics has become possible. Through a simulation the results considering the dynamics have been compared with that no regarding the dynamics and the possibility of real-time control has been proved.

  • PDF

Development of a Robot Element Design Program (로봇 요소품 설계 프로그램 개발)

  • Jung Il Ho;Kim Chang Su;Seo Jong Hwi;Park Tae Won;Kim Hee Jin;Choi Jae Rak;Byun Kyng Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.113-120
    • /
    • 2005
  • This paper presents the development of the design of the robot element. Robot element design is an important part of robot design since it decides the performance and life time of the robot. It is necessary that the robot kinematics and the robot dynamics are accomplished to design the robot elements. The robot kinematics and dynamics determine the design parameters of the element. We developed a robot element design program with which a designer can design the robot element with convenience and reliability. The program is composed of motor, harmonic driver and ball-screw design. The program is founded on the virtual robot design program. The virtual robot design program is the powerful software which may be used to solve various problems of the robot kinematics and dynamics. The robot element design program may be used to calculate the design parameters of the element that are necessary to design robot element. Therefore, the designer can decide upon the available robot elements available to perform the objective of the robot. The robot element design program is expected to increase the competitiveness and efficiency of the robot industry.

Modeling of Dynamics of Robot for Shoe Testing (신발테스트용 로봇의 동적 특성에 관한 모델링)

  • ;Gerald, Cole;Benno, Nigg
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1225-1227
    • /
    • 2004
  • The robotic shoe testing system that mechanically simulates human motion was proposed to overcome the problems associated with human subject tests. The objective of this study is to predict new motion trajectory for robot that will produce similar force and moment of particular human motion. In order to solve this problem, it is imperative to understand the dynamics of robot for shoe testing. The methodology using parameter estimation technique was proposed for this problem. Since the dynamics of robot is certainly different from that of human, it is necessary to adapt/modify the robot's trajectory for future analysis, which is currently under investigation.

  • PDF

An Adaptive and Robust Controller for the Undersea Robot Manipulator

  • Young-Sik kim;Park, Hyeung-Sik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.13-22
    • /
    • 2003
  • To coordinate the robot manipulator along the desired trajectory, the exact model of the dynamics is required. The added mass and added moment of inertia, buoyancy, drag force, and friction mainly affect the dynamics of the undersea robot manipulator, and they are quite complex and unknown. In this reason. the exact model of the undersea robot manipulator is difficult to obtain. In this paper, instead of having efforts to get the exact model of the robot dynamics, a control-based approach was performed. We modeled the dynamics of the undersea robot manipulator whose parameters are unknown, and then applied a proposed direct adaptive and robust control, which is different from previous studies. The unknown added mass, and added moment of inertia, drag force and friction are estimated by the direct adaptive control scheme, and the drag force which is dominant disturbance is compensated by the robust control. Also, stability of the proposed control scheme is analyzed.