• 제목/요약/키워드: Robot Control System

검색결과 2,875건 처리시간 0.035초

Internet Teleoperation of a Robot with Streaming Buffer System under Varying Time Delays

  • Park, J.H.;J. Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.82.1-82
    • /
    • 2001
  • It is known that existence of irregular transmission time delay is a major bottleneck for application of advanced robot control schemes to internet telerobotic systems. In the internet teleoperation system, the irregular transmission time delay causes a critical problem, which is unstable and inaccurate. This paper suggests a practical internet teleoperation system with streaming buffer system, which consists of a buffer, a buffer manager, and a control timer. The proposed system converts the irregular transmission time delay to constant. So, the system effectively transmits the control input to a remote site to operate a robot stably and accurately. This feature enables short control input interval. That means the entire system has ...

  • PDF

PSO를 이용한 지능형 로봇의 원격 주행 제어 (Remote Navigation Control for Intelligent Robot Using PSO)

  • 문현수;주영훈
    • 로봇학회논문지
    • /
    • 제5권1호
    • /
    • pp.64-69
    • /
    • 2010
  • In this paper, we propose remote navigation control for intelligent robot using particle swarm optimization(PSO). The proposed system consists of interfaces for intelligent robot navigation and user interface in order to control the intelligent robot remotely. And communication interfaces using TCP/IP socket is used. To do this, we first design the fuzzy navigation controller based on expert's knowledge for intelligent robot navigation. At this time, we use the PSO algorithm in order to identify the membership functions of fuzzy control rules. And then, we propose the remote system in order to navigate the robot remotely. Finally, we show the effectiveness and feasibility of the developed controller and remote system through some experiments.

수직면 부착이동 로봇을 위한 실시간 시스템 구현 (Development of a Real Time System for The Vertical Mobile Robot)

  • 이상회;양석원;김원배;박주이;김수호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1991-1992
    • /
    • 2006
  • this paper is described the Vortical Mobile Robot problem which can be generated a lot of error like gravity, mobile error between main control system of robot and application program and solution which is installed RTX( Real Time Extension ) Kernel to Embedded XP of main control board because it needs to guarantee real time between the main control board of robot and the motion drive board and to develop the remote operation system for real time robot control also in case The Vertical Mobile Robot that needs fast and stable motile control so it is proposed a guaranteed real time system

  • PDF

탄성지지부를 갖는 로봇 시스템의 제어 (Control of Robot System on the Elastic Base with Uncertainty)

  • 이선;이호길;이세헌
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.647-652
    • /
    • 2000
  • This paper presents a study on the position tracking control of robot system on the uncertain elastic base. The elastic base is modeled as a virtual robot which has passive joints and the control strategy is using approximate Jacobian operators. Jacobian operators represent the overall robot system including base movement. However, because we don't know the base movement we can't estimate the jacobian operators directly. The control algorithm is proposed which uses only Jacobian operators of a real robot as approximate Jacobian operators. The measured errors from external sensor are compensated by approximate Jacobian operators. The simulation results of a single-axis robot system show that the control strategy can be used for position tracking.

  • PDF

적응제어 기법을 이용한 필드 로봇의 궤적 추종에 관한 연구 (A Study on Trajectory Tracking of Field Robot using Adpative Control)

  • 서우석;김승수;양순용;이병룡;안경관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.496-499
    • /
    • 1997
  • Field robot represented by excavator can be applied for various kinds of working in manufacturing, construction, agriculture etc. because of the flexibility of its multi-joint mechanism and the high power of hydraulic actuators. In general, the dynamics of field robot have strong coupling, various kinds of non-linearity, and time-varying parameters according to working conditions. Therefore, it is very difficult to describe the system well, and design controller systematically based on its model. This paper established the mathematical model of field robot driven by electro-hydraulic servomechanism and constructed the adaptive control system robust to external load variations. The proposed control system for the field robot was evaluated by the computer simulation and the performance results of trajectory tracking were compared with that of PID control system.

  • PDF

Fara robot에서의 RCCL(Robot Control C Library) 구현 (Implementation of RCCL on fara robot)

  • 선경일;김병국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.714-717
    • /
    • 1992
  • An intelligent robot control system is developed, which is based on extensible hardwares and softwares. The system could be used to test advanced and complex real time application programs to avoid constraints on present robot control system in executing a complex or precise algorithms, due to the limitation of hardware and software. In this paper we used the RCCL(Robot Control C Library) on SUN4 as a supervisory system that plays the path planning and man-machine interface. And we used VxWORKS as a real time OS on a VME bus CPU equiped with some interface boards. Two systems were connected through the Ethernet network. We used the 4 axis manipulator, FARA, developed by Samsung Electronics Co.

  • PDF

비젼시스템을 이용한 이동로봇의 서보제어 (Servo control of mobile robot using vision system)

  • 백승민;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.540-543
    • /
    • 1997
  • In this paper, a precise trajectory tracking method for mobile robot using a vision system is presented. In solving the problem of precise trajectory tracking, a hierarchical control structure is used which is composed of the path planer, vision system, and dynamic controller. When designing the dynamic controller, non-ideal conditions such as parameter variation, frictional force, and external disturbance are considered. The proposed controller can learn bounded control input for repetitive or periodic dynamics compensation which provides robust and adaptive learning capability. Moreover, the usage of vision system makes mobile robot compensate the cumulative location error which exists when relative sensor like encoder is used to locate the position of mobile robot. The effectiveness of the proposed control scheme is shown through computer simulation.

  • PDF

새로운 신발 버핑로봇 매니퓰레이터 개발 (Development of a New Buffing Robot Manipulator for Shoes)

  • 황규득;조성덕;최형식
    • 한국정밀공학회지
    • /
    • 제23권7호
    • /
    • pp.76-83
    • /
    • 2006
  • In this paper, an analysis on a new robot manipulator developed for the side buffing of the shoes is presented. The robot manipulator is composed of five degrees of freedom. An analysis on the forward and inverse kinematics was performed. Through the analysis, an analytic solution was derived for the joint angles corresponding to the position and orientation of the tool in the Cartesian coordinates. The hardware system of the robot composed of the control system, input/output interface system, and related electronic system was developed. The communication system was also developed to interact the robot with the related surrounding systems. A graphic user interface(GUI) program including the forward/inverse kinematics, control algorithm, and communication program was developed using visual C++ language.

근사 자코비안 연산자를 이용한 탄성 지지부를 갖는 로봇 시스템의 제어 (Control of Robot System on the Elastic Base by Approximate Jacobian Operators)

  • 이선;이호길;황성호;이세헌
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.45-52
    • /
    • 2001
  • This paper presents a study on the position tracking control of a robot system on the uncertain elastic base. The elastic bathe is a nonholonomic system but it can be changed into holonomic system, which is much easier to analyze, by modeling an elastic base as a virtual robot that has passive joints. Also, Jacobian operators, which represent the overall robot system including base movement, are defined and applied to the changed model. However, because base movements are not known, the exact Jacobian operators can't be estimated. The control algorithm proposed is that uses only Jacobians of a real robot as approximate Jacobian operators. Therefore the approximate Jacobian operators compensate the measured errors from external sensors. The proposed control strategy is evaluated by the simulation and experiment of a single-axis robot system on the elastic base.

  • PDF

High-Precision Contour Control by Gaussian Neural Network Controller for Industrial Articulated Robot Arm with Uncertainties

  • Zhang, Tao;Nakamura, Masatoshi
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.272-282
    • /
    • 2001
  • Uncertainties are the main reasons of deterioration of contour control of industrial articulated robot arm. In this paper, a high-precision contour control method was proposed to overcome some main uncertainties, such as torque saturation, system delay dynamics, interference between robot links, friction, and so on. Firstly, each considered factor of uncertainties was introduced briefly. Then proper realizable objective trajectory generation was presented to avoid torque saturation from objective trajectory. According to the model of industrial articulated robot arm, construction of Gaussian neural network controller with considering system delay dynamic, interference between robot links and friction was explained in detail. Finally, through the experiment and simulation, the effectiveness of proposed method was verified. Furthermore, based on the results it was shown that the Gaussian neural network controller can be also adapted for the various kinds of friction and high-speed motion of industrial articulated robot arm.

  • PDF