• Title/Summary/Keyword: Robot Control Scheme

Search Result 576, Processing Time 0.029 seconds

A hybrid position/force control for robot manipulator with position controllers (위치 제어기를 갖는 로보트 매니퓰레이터의 Hybrid 위치/힘 제어)

  • 이병부;정광손;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.638-641
    • /
    • 1992
  • In this paper, a hybrid position/force control scheme is proposed. The control scheme modifies the position command for force control against constraint surface of environment and is very simply designed and implemented. The merits of the control scheme are that it can cope with change of constraint conditions and small position inaccuracy of the environment. A constraint surface position observer is also proposed to reduce disturbances on controlled force.

  • PDF

Balance Control of a Biped Robot Using the ZMP State Prediction of the Kalman Estimator (칼만예측기의 ZMP 상태추정을 통한 이족로봇의 균형제어기법)

  • Park, Sang-Bum;Han, Young-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.601-607
    • /
    • 2006
  • This paper proposes a novel balance control scheme of a biped robot to predict the next position of ZMP using Kalman Filter. The mathematical model of the biped robot is generally approximated by 3D-LIPM(3D-Linear Inverted Pendulum Mode), but it cannot completely express the robot's dynamics. The stability of the biped robot depends on whether the ZMP(Zero Moment Point) position is in the stability region or out of. And the internal error between the robot mechanism and its model could affect the stability of a robot. Therefore, the proposed balance control not reduces the internal error, but also timely generates the proper control. The experiment of the proposed balance control is simulated on the virtual workspace where the biped robot may encounter with various difficulties.

Real-Time Fuzzy Control for Dual-Arm with 8 Joints Robot Using the DSPs(TMS320C80) (DSPs(TMS320C80)을 이용한 8축 듀얼 아암 로봇의 실시간 퍼지제어)

  • 한성현;김종수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.35-47
    • /
    • 2004
  • In this paper presents a new approach to the design and real-time implementation of fuzzy control system based-on digital signal processors(DSP:IMS320C80) in order to improve the precision and robustness for system of industrial robot(Dual-Arm with 8 joint Robot). The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The IMS320C80 is used in implementing real time fuzzy control to provide an enhanced motion control for robot manipulators. In this paper, a Self-Organizing Fuzzy Controller(SOFC) for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variables of the controller. In the synthesis of a FLC(Fuzzy Logic Controller), one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult SOFC is proposed for a hierarchical control structure consisting of basic and high levels that modify control rules. The proposed SOFC scheme is simple in structure, Int in computation, and suitable for implementation of real-time control. Performance of the SOFC is illustrated by simulation and experimental results for a Dual-Arm robot with eight joints.

Cooperative Particle Swarm Optimization-based Model Predictive Control for Multi-Robot Formation (군집 로봇 편대 제어를 위한 협력 입자 군집 최적화 알고리즘 기반 모델 예측 제어 기법)

  • Lee, Seung-Mok;Kim, Hanguen;Myung, Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.429-434
    • /
    • 2013
  • This paper proposes a CPSO (Cooperative Particle Swarm Optimization)-based MPC (Model Predictive Control) scheme to deal with formation control problem of multiple nonholonomic mobile robots. In a distributed MPC framework, each robot needs to optimize control input sequence over a finite prediction horizon considering control inputs of the other robots where their cost functions are coupled by the state variables of the neighboring robots. In order to optimize the control input sequence, a CPSO algorithm is adopted and modified to fit into the formation control problem. Experiments are performed on a group of nonholonomic mobile robots to demonstrate the effectiveness of the proposed CPSO-based MPC for multi-robot formation.

$H_{\infty}$ Self-Tuning Control of a Flexible Link Robot with Unknown Payload (미지 부하 질량을 갖는 유연 링크 로봇의 $H_{\infty}$ 자기 동조 제어)

  • Han, Ki-Bong;Lee, Shi-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.160-168
    • /
    • 1997
  • A $H_{\infty}$self-tuning control scheme for the tip position of a flexible link robot handling unknown loads is presented here. The scheme essentially comprises a recursive least-squares identification algorithm and $H_{\infty}$self-tunning controller. The $H_{\infty}$control low is designed to be robust to uncertain parameters and the self-tunning action provides adaption to unknown parameters. Through numerical study, the performance comparison of the $H_{\infty}$self-tuning controller with a constant gain $H_{\infty}$controller as well as a LQG self-tuning controller clearly shows its superior ability in handling load changes in quiescent states.nt states.

  • PDF

Control of Mobile Robot Navigation Using Vision Sensor Data Fusion by Nonlinear Transformation (비선형 변환의 비젼센서 데이터융합을 이용한 이동로봇 주행제어)

  • Jin Tae-Seok;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.304-313
    • /
    • 2005
  • The robots that will be needed in the near future are human-friendly robots that are able to coexist with humans and support humans effectively. To realize this, robot need to recognize his position and direction for intelligent performance in an unknown environment. And the mobile robots may navigate by means of a number of monitoring systems such as the sonar-sensing system or the visual-sensing system. Notice that in the conventional fusion schemes, the measurement is dependent on the current data sets only. Therefore, more of sensors are required to measure a certain physical parameter or to improve the accuracy of the measurement. However, in this research, instead of adding more sensors to the system, the temporal sequence of the data sets are stored and utilized for the accurate measurement. As a general approach of sensor fusion, a UT -Based Sensor Fusion(UTSF) scheme using Unscented Transformation(UT) is proposed for either joint or disjoint data structure and applied to the landmark identification for mobile robot navigation. Theoretical basis is illustrated by examples and the effectiveness is proved through the simulations and experiments. The newly proposed, UT-Based UTSF scheme is applied to the navigation of a mobile robot in an unstructured environment as well as structured environment, and its performance is verified by the computer simulation and the experiment.

Friction Compensation of X-Y robot Using a Learning Control Technique (학습제어기법을 이용한 X-Y Table의 마찰보상)

  • Sohn, Kyoung-Oh;Kuc, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.248-255
    • /
    • 2000
  • Whereas the linear PID controller is widely used for control of industrial servo systems a high precision positioning system is not easy to control only with the PID controller due to uncertain nonlinear dynamics such as friction backlash etc. As a viable means to overcome the difficulty a learning control scheme is proposed in this paper that is simple and straightforward to implement. The proposed learning controller takes full advantage of current feedback capability of the inner-loop of the control system in that electrical motor dynamics as the well as mechanical part of X-Y positioning system is included in the learning control scheme, The experimental results are given to demonstrate its feasibility and effectiveness in terms of convergence precision of tracking and robustness in comparison with the conventional control method.

  • PDF

Fuzzy Logic Controller for a Mobile Robot Navigation (퍼지제어기를 이용한 무인차 항법제어)

  • Chung, Hak-Young;Lee, Jang-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.713-716
    • /
    • 1991
  • This paper describes a methodology of mobile robot navigation which is designed to carry heavy payloads at high speeds to be used in FMS(Flexible Manufacturing System) without human control. Intelligent control scheme using fuzzy logic is applied to the navigation control. It analyzes sensor readings from multi-sensor system, which is composed of ultrasonic sensors, infrared sensors and odometer, for environment learning, planning, landmark detecting and system control. And it is implemented on a physical robot, AGV(Autonomous Guided Vehicle) which is a two-wheeled, indoor robot. An on-board control software is composed of two subsystems, i.e., AGV control subsystem and Sensor control subsystem. The results show that the navigation of the AGV is robust and flexible, and a real-time control is possible.

  • PDF

Attitude Control of Planar Space Robot based on Self-Organizing Data Mining Algorithm

  • Kim, Young-Woo;Matsuda, Ryousuke;Narikiyo, Tatsuo;Kim, Jong-Hae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.377-382
    • /
    • 2005
  • This paper presents a new method for the attitude control of planar space robots. In order to control highly constrained non-linear system such as a 3D space robot, the analytical formulation for the system with complex dynamics and effective control methodology based on the formulation, are not always obtainable. In the proposed method, correspondingly, a non-analytical but effective self-organizing modeling method for controlling a highly constrained system is proposed based on a polynomial data mining algorithm. In order to control the attitude of a planar space robot, it is well known to require inputs characterized by a special pattern in time series with a non-deterministic length. In order to correspond to this type of control paradigm, we adopt the Model Predictive Control (MPC) scheme where the length of the non-deterministic horizon is determined based on implementation cost and control performance. The optimal solution to finding the size of the input pattern is found by a solving two-stage programming problem.

  • PDF