• Title/Summary/Keyword: Robot Control Data

Search Result 711, Processing Time 0.037 seconds

Study of Furniture Design Utilizing 3D Printers Joris Laarman (요리스 라만(Joris Laarman)의 3D프린터를 활용한 가구디자인에 관한 연구)

  • Lee, Hyun Jung
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.2
    • /
    • pp.128-136
    • /
    • 2016
  • Digital designs that appear in the three-dimensional virtual space by the digital type are designed as there is not an image created with an organic artificially generated (Creation) and representation (Modifying), developed by the specific environment given. The advanced digital design will produce a result with an algorithm according to a mathematical operation and the environment and has the nature of generating the real world, changes, development and affinity (Genetic Process). The digital design process is largely defined by a set of processes that are consistently designed to integrate form of creation, reproduction, proceeds in three steps, while the manufacture and assembly as a form of maintenance as possible the intended form of control data from the concept of building. By Joris Laarman 3D printer design is a simulation created by the digital process by the various algorithms and design achieved through the development of 3D printers, such as new materials and MX3D. From the mold production of a complex whole by using a robot and other digital production tool extracts a variety of forms.

Fuzzy Distance Estimation for a Fish Robot

  • Shin, Daejung;Na, Seung-You;Kim, Jin-Young
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.316-321
    • /
    • 2005
  • We designed and implemented fish robots for various purposes such as autonomous navigation, maneuverability control, posture balancing and improvement of quick turns in a tank of 120 X 120 X 180cm size. Typically, fish robots have 30-50 X 15-25 X 10-20cm dimensions; length, width and height, respectively. It is essential to have the ability of quick and smooth turning to avoid collision with obstacles or walls of the water pool at a close distance. Infrared distance sensors are used to detect obstacles, magneto-resistive sensors are used to read direction information, and a two-axis accelerometer is mounted to compensate output of direction sensors. Because of the swing action of its head due to the tail fin movement, the outputs of an infrared distance sensor contain a huge amount of noise around true distances. With the information from accelerometers and e-compass, much improved distance data can be obtained by fuzzy logic based estimation. Successful swimming and smooth turns without collision demonstrated the effectiveness of the distance estimation.

A Dynamic Panel Analysis of the Determinants of Adoption of Industrial Robots (동적 패널모형을 이용한 산업용 로봇 도입의 결정요인 분석)

  • Jeong, Jin-Hwa;Im, Dong-Geun
    • Journal of Technology Innovation
    • /
    • v.26 no.4
    • /
    • pp.173-198
    • /
    • 2018
  • In this paper, we analyze the determinants of the adoption of industrial robots using the data from 42 countries, and thereby examine the factors underlying the rapid expansion of industrial robots in Korea. To this end, the industrial robot data for the years 2001-2016 were drawn from the World Robotics dataset of the International Federation of Robotics (IFR). The explanatory variables included labor market environment variables and innovation capacity variables extracted from the dataset of the relevant international organizations. For data analysis, the Arellano-Bond dynamic panel analysis was performed to control for the endogeneity problem of some explanatory variables. The empirical results confirmed the exceptionally rapid expansion of industrial robots in Korea as compared to other countries, even when considering the national income level, employment cost, and innovation capacity. This phenomenon could be attributed to both the demand-side and supply-side factors. For one thing, changes in the labor market environment, such as an increase in employment costs, have led to an increase of the corporate demand for industrial robots. For another, the supply-side factors, such as an increase in the capital intensity and innovation capacity of companies, have also contributed to the widespread adoption of industrial robots.

Efficient Tracking of a Moving Object Using Optimal Representative Blocks

  • Kim, Wan-Cheol;Hwang, Cheol-Ho;Park, Su-Hyeon;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.41.3-41
    • /
    • 2002
  • Motion estimation using Full-Search(FS) and Block-Matching Algorithm(BMA) is often used in the case of moving object tracking by vision sensors. However these methods often miss the real-time vision data because these schemes suffer the heavy computational load. When the image size of moving object is changed in an image frame according to the distance between the camera of mobile robot and the moving object, the tracking performance of a moving object may decline with these methods because of the shortage of active handling. In this paper, the variable-representative block that can reduce a lot of data computations, is defined and optimized by changing the size of representative block accor...

  • PDF

Real-time 3D Graphic Simulation of the Spent Fuel Rod Extracting Machine for Remote Monitoring (사용후핵연료봉 인출장치의 원격감시를 위한 실시간 3차원 그래픽 시뮬레이션)

  • 송태길;이종열;김성현;윤지섭
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.4
    • /
    • pp.327-335
    • /
    • 2000
  • The spent fuel rod extracting machine is automatically operated in high radioactive environment, so high reliability of operation is required. In this paper, to enhance the reliability of this machine by providing a close monitoring capability. a real time graphic simulation method is suggested. This method utilizes conventional IGRIP (Interactive Graphics Robot Instruction Program) 3D graphic simulation tool to visualize and simulate the 3D graphic model of this machine. Also, the dedicated protocol is defined for transmission of the operational data of the machine. The real time graphic simulation is realized by developing the socket module between a graphic workstation and a machine control computer through the TCP/IP network and by dividing the 3D graphic simulation GSL(Graphic Simulation Language) program as a small sized sub routine. The suggested method is implemented while automatically operating the rod extracting machine. The result of implementation shows that the real time 3D graphic simulation is well synchronized with the actual machine according to the operational data.

  • PDF

DNA Inspired CVD Diagnostic Hardware Architecture (DNA 특성을 모방한 심혈관질환 진단용 하드웨어)

  • Kwon, Oh-Hyuk;Kim, Joo-Kyung;Ha, Jung-Woo;Park, Jea-Hyun;Chung, Duck-Jin;Lee, Chong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.320-326
    • /
    • 2008
  • In this paper, we propose a new algorithm emulating the DNA characteristics for noise-tolerant pattern matching problem on digital system. The digital pattern matching becomes core technology in various fields, such as, robot vision, remote sensing, character recognition, and medical diagnosis in particular. As the properties of natural DNA strands allow hybridization with a certain portion of incompatible base pairs, DNA-inspired data structure and computation technique can be adopted to bio-signal pattern classification problems which often contain imprecise data patterns. The key feature of noise-tolerance of DNA computing comes from control of reaction temperature. Our hardware system mimics such property to diagnose cardiovascular disease and results superior classification performance over existing supervised learning pattern matching algorithms. The hardware design employing parallel architecture is also very efficient in time and area.

A Study on Development and realization of control algorithm for robot hand using master hand and slave hand (Master hand와 slave hand를 이용한 로붓 손의 제어 알고리즘 개발 및 구현에 관한 연구)

  • Lee, Seung;Choi, Kyung-Sam;Lee, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2430-2432
    • /
    • 2002
  • We made a master hand which can be used as tool for getting grasping data. By using the data from the master hand, we analyzed grasping patterns of human hands. Based on this analyzed results, we developed an grasping algorithm for some particular hand actions. To develop the above algorithm, we programmed a 3D simulation S/W using Visual C++. And we made a slave hand to prove the validity of the proposed algorithm.

  • PDF

Human Indicator and Information Display using Space Human Interface in Networked Intelligent Space

  • Jin Tae-Seok;Niitsuma Mihoko;Hashimoto Hideki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.632-638
    • /
    • 2005
  • This paper describes a new data-handing, based on a Spatial Human Interface as human indicator, to the Spatial-Knowledge-Tags (SKT) in the spatial memory the Spatial Human Interface (SHI) is a new system that enables us to facilitate human activity in a working environment. The SHI stores human activity data as knowledge and activity history of human into the Spatial Memory in a working environment as three-dimensional space where one acts, and loads them with the Spatial-Knowledge-Tags(SKT) by supporting the enhancement of human activity. To realize this, the purpose of SHI is to construct new relationship among human and distributed networks computers and sensors that is based on intuitive and simultaneous interactions. In this paper, the specified functions of SKT and the realization method of SKT are explained. The utility of SKT is demonstrated in designing a robot motion control.

Innovative value chain creation research according to AI jobs

  • SEO, Dae-Sung;SEO, Byeong-Min
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.10
    • /
    • pp.7-16
    • /
    • 2020
  • Purpose: It suggests that making a policy and strategies in a way of AI and its impact of commercialization on economic efficiency, social custom ethics. Research design, data, and methodology: The paper has analyzed the data based on the proposed model when derived as AI vs. FI job, etc. It is very different for each professional evaluation, which is artificial intelligence or robot job. One concept case was selected as a substitute job, with a relatively low level of occupation ability, such as direct labors, easily replaced. By the induction data has resulted in modeling. Results: The paper suggests that AI at high level become something how to make real decisions on ethical value modeling. Through physical simulation with the deduction data, it can be tuned to design and control what has not been solved, from human senses to climate. Conclusion: For the exploiting of new AI decision-making jobs in markets, the deduction data is possible to prove to AI's Decision-making that the percentage who can easily have different leadership as is different for each person. what is generated by some information silos may be applied to occupation societies. The empirical results indicate the deduction data that if AI determines ethical decisions (VC) for that modifications, it may replace future jobs.

Real-Time Seam Tracking System Using a Visual Device with Vertical Projection of Laser Beam (레이저빔 수직투사 구조의 시각장치를 이용한 실시간 용접선추적 시스템)

  • Kim, Jin-Dae;Lee, Jeh-Won;Shin, Chan-Bai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.10
    • /
    • pp.64-74
    • /
    • 2007
  • Because of the size and environment in the shipbuilding process, the portable type robot is required for the automatic seam tracking. For this reason, the structure of laser sensor should be considered in the initial design step and the coordinate transformation between welding robot and laser sensor, which is joint finder, must be identified exactly and the real time tracking algorithm based on these consideration could be developed. In this research, laser displacement sensor in which its structure is laser beam's vertical projection, is developed to recognize the location of weld joint. In practical applications, however, images of weld joints are often degraded because of the surface specularity or spatter. To overcome the problem, the constrained joint finding algorithm is proposed. In the approach of coordinate conversion rule for the visual feedback control among welding torch, robot body and laser sensor is applied by the same reference point method. In the real time seam tracking algorithms we propose constrained sampling method which uses look ahead distance. The RLS(Recursive Least Square) filter is applied to obtain the smooth tracking path from the sensitive edge data. From the experimental results, we could see the possibility that the developed laser sensor with proposed processing algorithm and real time seam tracking method can be used as a welding under the shipbuilding condition.