• Title/Summary/Keyword: Robot Arm Force Control

Search Result 60, Processing Time 0.037 seconds

Intelligent Position Control of a Vertical Rotating Single Arm Robot Using BLDC Servo Drive

  • Manikandan, R.;Arulmozhiyal, R.
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.205-216
    • /
    • 2016
  • The manufacturing sector resorts to automation to increase production and homogeneity of products during mass production, without increasing scarce, expensive, and unreliable manpower. Automation in the form of multiple robotic arms that handle materials in all directions in different stages of the process is proven to be the best way to increase production. This paper thoroughly investigates robotic single-arm movements, that is, 360° vertical rotation, with the help of a brushless DC motor, controlled by a fuzzy proportional-integral-derivative (PID) controller. This paper also deals with the design and performance of the fuzzy-based PID controller used to control vertical movement against the limited scope of conventional PID feedback controller and how the torque of the arm is affected by the fuzzy PID controller in the four quadrants to ensure constant speed and accident-free operation despite the influence of gravitational force. The design was simulated through MATLAB/SIMULINK and integrated with dSPACE DS1104-based hardware to verify the dynamic behaviors of the arm.

Implementation of Position and Force Control by Modelling of a Miniatured Excavator (소형 굴삭기의 모델링을 통한 위치 및 힘제어 구현)

  • Oh, Myeong Sik;Seo, Ja Ho;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.12
    • /
    • pp.1034-1039
    • /
    • 2016
  • This paper presents the implementation and control of a small-scaled excavator system. The commercial miniature of an excavator system has been modified and its control hardware is embedded to access the feedback control. Encoder sensors are attached to the joint and a force sensor is mounted on the end-effector so that feedback position control is accessible as well as force control. The dynamic model of the excavator system is derived as a four linkage robot arm and its control performances are simulated. Experimental studies of contact force control tasks are conducted to test the control algorithm for the excavator system.

Intelligent Switching Control of a Pneumatic Artificial Muscle Robot using Learning Vector Quantization Neural Network (학습벡터양자화 뉴럴네트워크를 이용한 공압 인공 근육 로봇의 지능 스위칭 제어)

  • Yoon, Hong-Soo;Ahn, Kyoung-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.82-90
    • /
    • 2009
  • Pneumatic cylinder is one of the low cost actuation sources which have been applied in industrial and prosthetic application since it has a high power/weight ratio, a high-tension force and a long durability However, the control problems of pneumatic systems, oscillatory motion and compliance, have prevented their widespread use in advanced robotics. To overcome these shortcomings, a number of newer pneumatic actuators have been developed such as McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle (PAM) Manipulators. In this paper, one solution for position control of a robot arm, which is driven by two pneumatic artificial muscles, is presented. However, some limitations still exist, such as a deterioration of the performance of transient response due to the changes in the external load of the robot arm. To overcome this problem, a switching algorithm of the control parameter using a learning vector quantization neural network (LVQNN) is proposed in this paper. This estimates the external load of the pneumatic artificial muscle manipulator. The effectiveness of the proposed control algorithm is demonstrated through experiments with different external working loads.

Active assembly Method Using a Two-Arm Robot System in Highly Uncertain Environment (불확실한 환경에서 두 팔 로봇을 이용한 능동적 조립 방법)

  • 정성엽;강경대;이두용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.73-73
    • /
    • 2000
  • Assembly is usually performed by one robot and fixtures. This type of assembly system has Low flexibility in terms of variety of parts and part-presentation that the system can handle. This paper addresses assembly without fixtures using two-manipulator robot. An active method using force feedback is proposed for the peg-in-hole assembly in highly uncertain environment. Assembly states are described by extended contact relations. Qualitative templates for events are easily derived from the token vector of the Petrinet model. The states are recognized through identification of the events using two 6-d.o.f force/moment sensors. The proposed method is verified and evaluated through experiments with round peg- in-hole assembly.

  • PDF

POSITION CONTROL OF A FLEXIBLE ROBOT ARM UNDER IMPULSIVE LOADING THE TIP

  • Chonan, Seiji;Yuki, Yasuhiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.896-901
    • /
    • 1990
  • A simulation analysis is presented for the position control of a single-link flexible manipulator whose end-effector is subjected to an impulsive force. Arm is rotated by a d.c. servomotor at the shoulder so that the end point stays precisely at its initial position even if the end effector is thumped with the impulsive loading. A gap sensor is used to measure the tip displacement. The control torque based on the PD control law is applied to the motor through the driver circuit. The control strategy is tested by means of computer simulation for the one-link flexible-arm prototype in the authers' laboratory at Tohoku Univ.

  • PDF

Control Methodology of Multiple Arms for IMS : Experimental Sawing Task by Nonidentical Cooperating Arms (IMS를 위한 로봇 군 제어방법 : 이종 협조 로봇의 톱질 작업)

  • Yeo, Hee-Joo;Suh, Il-Hong;Lee, Byung-Ju;Oh, Sang-Rok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.452-460
    • /
    • 1999
  • Sawing experiments using a two-arm system have been performed in this work. The two-arm system under consideration of two kinematically-nonidentical arms. A passive joint is inserted at the end-point of one robot in order to increase the mobility up to the motion degree required for sawing tasks. A hybrid control algorithm for control of the two-arm system is designed. We experimentally show that the performance of the velocity and force response are satisfactory, and that one additional passive joint not only prevents the system from unwanted yaw motion in the sawing task, but also allows an unwanted pitch motion to be notably reduced by an internal load control. To show the general applicability of the proposed algorithms, we perform experimentation under several different conditions for saw, such as three saw blades, two sawing speeds, and two vertical forces.

  • PDF

An improved Robust and Adaptive Controller Design for a Robot Manipulator (로보트 매니퓰레이터의 개선된 견실 및 적응제어기의 설계)

  • Park, H.S.;Kim, D.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.20-27
    • /
    • 1994
  • This paper presents a controller design to coordinate a robot manipulator under unknown system parameters and bounded disturbance inputs. To control the motion of the manipulator, an inverse dynamics control scheme is applied. Since parameters of the robot manipulators such as mass and inertia are not perfectly known, the difference between the actual and estimated parameters works as a disturbance force. To identify the unknown parameters, an improved adaptive control algorithm is directly derived from a chosen Lyapunov's function candidate based on the Lyapunov's Second Method. A robust control algorithm is devised to counteract the bounded disturbance inputs such as contact forces and disturbing forces coming from the difference between the actual and the estimated system parameters. Numerical examples are shown using three degree-of-freedom planar arm.

  • PDF

A Miniature Humanoid Robot That Can Play Soccor

  • Lim, Seon-Ho;Cho, Jeong-San;Sung, Young-Whee;Yi, Soo-Yeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.628-632
    • /
    • 2003
  • An intelligent miniature humanoid robot system is designed and implemented as a platform for researching walking algorithm. The robot system consists of a mechanical robot body, a control system, a sensor system, and a human interface system. The robot has 6 dofs per leg, 3 dofs per arm, and 2 dofs for a neck, so it has total of 20 dofs to have dexterous motion capability. For the control system, a supervisory controller runs on a remote host computer to plan high level robot actions based on the vision sensor data, a main controller implemented with a DSP chip generates walking trajectories for the robot to perform the commanded action, and an auxiliary controller implemented with an FPGA chip controls 20 actuators. The robot has three types of sensors. A two-axis acceleration sensor and eight force sensing resistors for acquiring information on walking status of the robot, and a color CCD camera for acquiring information on the surroundings. As an example of an intelligent robot action, some experiments on playing soccer are performed.

  • PDF

A Study on the Position Control of the parallelogram link DD Robot Using Neural Network (신경회로망을 이용한 평행링크 DD로봇의 위치제어)

  • 김성대
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.64-71
    • /
    • 1999
  • In this paper, two degree of freedom parallelogram link mechanism is used as DD(Direct-drive) robot mechanism. In parallelogram link mechanism, two motors being established in each base frame, the mass of motor itself is not loaded to anther motor; the number of links are increased, the mass of arm being lighter; with the estabilishment of link parameter, nonlinearity such as the centrifugal force disappears; at the same time anti-interference between motors can be realized. And to realize highy-accurate drive of parallelogram link DD robot manipulator, to improve the learning speed through the design of leaning control system using neural network, to raise adapting power to the varied work objects; the learning control algorithm is composed of neural network and feedback controller in this paper.

  • PDF

A study on control of the Haptic Device use for Robot Arm (다관절 다단의 햅틱장치 제어에 관한 연구)

  • Park, In-man;Kim, Deog-Soo;Park, Jeong-Man
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.1
    • /
    • pp.61-66
    • /
    • 2015
  • Force feedback control is investigated for improving the quality of the haptic feedback in virtual reality applications. We proposed method for control of the haptic device using universal serial bus. and evaluated the characteristics with experimental set.