• Title/Summary/Keyword: Robot's hand

Search Result 110, Processing Time 0.029 seconds

A Study on Intelligent Robot Bin-Picking System with CCD Camera and Laser Sensor (CCD카메라와 레이저 센서를 조합한 지능형 로봇 빈-피킹에 관한 연구)

  • Kim, Jin-Dae;Lee, Jeh-Won;Shin, Chan-Bai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.58-67
    • /
    • 2006
  • Due to the variety of signal processing and complicated mathematical analysis, it is not easy to accomplish 3D bin-picking with non-contact sensor. To solve this difficulties the reliable signal processing algorithm and a good sensing device has been recommended. In this research, 3D laser scanner and CCD camera is applied as a sensing device respectively. With these sensor we develop a two-step bin-picking method and reliable algorithm for the recognition of 3D bin object. In the proposed bin-picking, the problem is reduced to 2D intial recognition with CCD camera at first, and then 3D pose detection with a laser scanner. To get a good movement in the robot base frame, the hand eye calibration between robot's end effector and sensing device should be also carried out. In this paper, we examine auto-calibration technique in the sensor calibration step. A new thinning algorithm and constrained hough transform is also studied for the robustness in the real environment usage. From the experimental results, we could see the robust bin-picking operation under the non-aligned 3D hole object.

Background illumination invariant hand posture recognition system using color temperature compensation (색 온도 보정을 통한 배경 및 조도 변화에 강인한 손 모양 인식 방법)

  • Lee, Seong-il;Min, Hyun-Seok;Shin, Ho-Chul;Lim, Eul-Gyoon;Hwang, Dae Hwan;Ro, Yong Man
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.411-412
    • /
    • 2009
  • 최근 시각 기반 인터페이스를 위하여, 손 동작 인식 기술 개발의 필요성이 증가하고 있다. 이러한 손 동작 인식 기술에서 손 모양 인식은 중요한 부분이며, 이는 손 영역 검출의 결과에 많은 영향을 받는다. 기존의 많은 손 동작 인식 기술들은 사람의 피부색이 갖는 컬러 특징을 이용하여 손 영역을 검출하였다. 그러나, 이러한 컬러 정보는 배경 및 조도 변화에 매우 민감하다. 이러한 문제를 해결하기 위해 본 논문에서는, 색 온도 보정 과정을 손 영역 검출에 적용함으로써 배경 및 조도 변화에 강인한 손 모양 인식 시스템을 제안한다. 제안한 방법이 배경 및 조도 변화에 강인함을 보이기 위해, 조명의 밝기 수준을 조절하며, 다양한 색을 배경으로 찍은 손 영상을 입력으로 손 모양 인식 성능을 실험하였다. 기존의 피부색을 이용한 손 영역 검출과의 비교 실험 결과를 통해, 제안한 방법이 배경 및 조도 변화에 강인한 손 모양 인식 성능을 가짐을 확인하였다.

The Emotional Boundary Decision in a Linear Affect-Expression Space for Effective Robot Behavior Generation (효과적인 로봇 행동 생성을 위한 선형의 정서-표정 공간 내 감정 경계의 결정 -비선형의 제스처 동기화를 위한 정서, 표정 공간의 영역 결정)

  • Jo, Su-Hun;Lee, Hui-Sung;Park, Jeong-Woo;Kim, Min-Gyu;Chung, Myung-Jin
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.540-546
    • /
    • 2008
  • In the near future, robots should be able to understand human's emotional states and exhibit appropriate behaviors accordingly. In Human-Human Interaction, the 93% consist of the speaker's nonverbal communicative behavior. Bodily movements provide information of the quantity of emotion. Latest personal robots can interact with human using multi-modality such as facial expression, gesture, LED, sound, sensors and so on. However, a posture needs a position and an orientation only and in facial expression or gesture, movements are involved. Verbal, vocal, musical, color expressions need time information. Because synchronization among multi-modalities is a key problem, emotion expression needs a systematic approach. On the other hand, at low intensity of surprise, the face could be expressed but the gesture could not be expressed because a gesture is not linear. It is need to decide the emotional boundaries for effective robot behavior generation and synchronization with another expressible method. If it is so, how can we define emotional boundaries? And how can multi-modality be synchronized each other?

  • PDF

The Development of Robot and Augmented Reality Based Contents and Instructional Model Supporting Childrens' Dramatic Play (로봇과 증강현실 기반의 유아 극놀이 콘텐츠 및 교수.학습 모형 개발)

  • Jo, Miheon;Han, Jeonghye;Hyun, Eunja
    • Journal of The Korean Association of Information Education
    • /
    • v.17 no.4
    • /
    • pp.421-432
    • /
    • 2013
  • The purpose of this study is to develop contents and an instructional model that support children's dramatic play by integrating the robot and augmented reality technology. In order to support the dramatic play, the robot shows various facial expressions and actions, serves as a narrator and a sound manager, supports the simultaneous interaction by using the camera and recognizing the markers and children's motions, records children's activities as a photo and a video that can be used for further activities. The robot also uses a projector to allow children to directly interact with the video object. On the other hand, augmented reality offers a variety of character changes and props, and allows various effects of background and foreground. Also it allows natural interaction between the contents and children through the real-type interface, and provides the opportunities for the interaction between actors and audiences. Along with these, augmented reality provides an experience-based learning environment that induces a sensory immersion by allowing children to manipulate or choose the learning situation and experience the results. In addition, the instructional model supporting dramatic play consists of 4 stages(i.e., teachers' preparation, introducing and understanding a story, action plan and play, evaluation and wrapping up). At each stage, detailed activities to decide or proceed are suggested.

Application of Calibration Techniques to Enhance Accuracy of Markerless Surgical Robotic System for Intracerebral Hematoma Surgery (뇌혈종 제거 수술을 위한 무마커 수술 유도 로봇 시스템의 정확도 향상을 위한 캘리브레이션 기법)

  • Park, Kyusic;Yoon, Hyon Min;Shin, Sangkyun;Cho, Hyunchul;Kim, Youngjun;Kim, Laehyun;Lee, Deukhee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.246-253
    • /
    • 2015
  • In this paper, we propose calibration methods that can be applied to the markerless surgical robotic system for Intracerebral Hematoma (ICH) Surgery. This surgical robotic system does not require additional process of patient imaging but only uses CT images that are initially taken for a diagnosis purpose. Furthermore, the system applies markerless registration method other than using stereotactic frames. Thus, in overall, our system has many advantages when compared to other conventional ICH surgeries in that they are non-invasive, much less exposed to radiation exposure, and most importantly reduces a total operation time. In the paper, we specifically focus on the application of calibration methods and their verification which is one of the most critical factors that determine the accuracy of the system. We implemented three applications of calibration methods between the coordinates of robot's end-effector and the coordinates of 3D facial surface scanner, based on the hand-eye calibration method. Phantom tests were conducted to validate the feasibility and accuracy of our proposed calibration methods and the surgical robotic system.

Different Look, Different Feel: Social Robot Design Evaluation Model Based on ABOT Attributes and Consumer Emotions (각인각색, 각봇각색: ABOT 속성과 소비자 감성 기반 소셜로봇 디자인평가 모형 개발)

  • Ha, Sangjip;Lee, Junsik;Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.55-78
    • /
    • 2021
  • Tosolve complex and diverse social problems and ensure the quality of life of individuals, social robots that can interact with humans are attracting attention. In the past, robots were recognized as beings that provide labor force as they put into industrial sites on behalf of humans. However, the concept of today's robot has been extended to social robots that coexist with humans and enable social interaction with the advent of Smart technology, which is considered an important driver in most industries. Specifically, there are service robots that respond to customers, the robots that have the purpose of edutainment, and the emotionalrobots that can interact with humans intimately. However, popularization of robots is not felt despite the current information environment in the modern ICT service environment and the 4th industrial revolution. Considering social interaction with users which is an important function of social robots, not only the technology of the robots but also other factors should be considered. The design elements of the robot are more important than other factors tomake consumers purchase essentially a social robot. In fact, existing studies on social robots are at the level of proposing "robot development methodology" or testing the effects provided by social robots to users in pieces. On the other hand, consumer emotions felt from the robot's appearance has an important influence in the process of forming user's perception, reasoning, evaluation and expectation. Furthermore, it can affect attitude toward robots and good feeling and performance reasoning, etc. Therefore, this study aims to verify the effect of appearance of social robot and consumer emotions on consumer's attitude toward social robot. At this time, a social robot design evaluation model is constructed by combining heterogeneous data from different sources. Specifically, the three quantitative indicator data for the appearance of social robots from the ABOT Database is included in the model. The consumer emotions of social robot design has been collected through (1) the existing design evaluation literature and (2) online buzzsuch as product reviews and blogs, (3) qualitative interviews for social robot design. Later, we collected the score of consumer emotions and attitudes toward various social robots through a large-scale consumer survey. First, we have derived the six major dimensions of consumer emotions for 23 pieces of detailed emotions through dimension reduction methodology. Then, statistical analysis was performed to verify the effect of derived consumer emotionson attitude toward social robots. Finally, the moderated regression analysis was performed to verify the effect of quantitatively collected indicators of social robot appearance on the relationship between consumer emotions and attitudes toward social robots. Interestingly, several significant moderation effects were identified, these effects are visualized with two-way interaction effect to interpret them from multidisciplinary perspectives. This study has theoretical contributions from the perspective of empirically verifying all stages from technical properties to consumer's emotion and attitudes toward social robots by linking the data from heterogeneous sources. It has practical significance that the result helps to develop the design guidelines based on consumer emotions in the design stage of social robot development.

A new Observation Model to Improve the Consistency of EKF-SLAM Algorithm in Large-scale Environments (광범위 환경에서 EKF-SLAM의 일관성 향상을 위한 새로운 관찰모델)

  • Nam, Chang-Joo;Kang, Jae-Hyeon;Doh, Nak-Ju Lett
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • This paper suggests a new observation model for Extended Kalman Filter based Simultaneous Localization and Mapping (EKF-SLAM). Since the EKF framework linearizes non-linear functions around the current estimate, the conventional line model has large linearization errors when a mobile robot locates faraway from its initial position. On the other hand, the model that we propose yields less linearization error with respect to the landmark position and thus suitable in a large-scale environment. To achieve it, we build up a three-dimensional space by adding a virtual axis to the robot's two-dimensional coordinate system and extract a plane by using a detected line on the two-dimensional space and the virtual axis. Since Jacobian matrix with respect to the landmark position has small value, we can estimate the position of landmarks better than the conventional line model. The simulation results verify that the new model yields less linearization errors than the conventional line model.

Multi-Camera Vision System for Tele-Robotics

  • Park, Changhwn;Kohtaro Ohba;Park, Kyihwan;Sayaka Odano;Hisayaki Sasaki;Nakyoung Chong;Tetsuo Kotoku;Kazuo Tanie
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.25.6-25
    • /
    • 2001
  • A new monitoring system is proposed to give direct visual information of the remote site when working with a tele-operation system. In order to have a similar behavior of a human when he is inspecting an object, multiple cameras that have different view point are attached around the robot hand and are switched on and elf according to the operator´s motion such as joystick manipulation or operator´s head movement. The performance of the system is estimated by performing comparison experiments among single camera (SC) vision system, head mount display (HMD)system and proposed multiple camera (MC) vision system by applying a task to several examines. The reality, depth feeling and controllability are estimated for the examines ...

  • PDF

Real-Time Characteristics Analysis and Improvement for OPRoS Component Scheduler on Windows NT Operating System (Windows NT상에서의 OPRoS 컴포넌트 스케줄러의 실시간성 분석 및 개선)

  • Lee, Dong-Su;Ahn, Hee-June
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.38-46
    • /
    • 2011
  • The OPRoS (Open Platform for Robotic Service) framework provides uniform operating environment for service robots. As an OPRoS-based service robot has to support real-time as well as non-real-time applications, application of Windows NT kernel based operating system can be restrictive. On the other hand, various benefits such as rich library and device support and abundant developer pool can be enjoyed when service robots are built on Windows NT. The paper presents a user-mode component scheduler of OPRoS, which can provide near real-time scheduling service on Windows NT based on the restricted real-time features of Windows NT kernel. The component scheduler thread with the highest real-time priority in Windows NT system acquires CPU control. And then the component scheduler suspends and resumes each periodic component executors based on its priority and precedence dependency so that the component executors are scheduled in the preemptive manner. We show experiment analysis on the performance limitations of the proposed scheduling technique. The analysis and experimental results show that the proposed scheduler guarantees highly reliable timing down to the resolution of 10ms.

Kinematic and Dynamic Analyses of Human Arm Motion

  • Kim, Junghee;Cho, Sungho;Lee, Choongho;Han, Jaewoong;Hwang, Heon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.138-148
    • /
    • 2013
  • Purpose: Determining an appropriate path is a top priority in order for a robot to maneuver in a dynamically efficient way especially in a pick-and-place task. In a non-standardized work environment, current robot arm executes its motion based on the kinematic displacements of joint variables, though resulting motion is not dynamically optimal. In this research we suggest analyzing and applying motion patterns of the human arm as an alternative to perform near optimum motion trajectory for arbitrary pick-and-place tasks. Methods: Since the motion of a human arm is very complicated and diverse, it was simplified into two links: one from the shoulder to the elbow, and the other from the elbow to the hand. Motion patterns were then divided into horizontal and vertical components and further analyzed using kinematic and dynamic methods. The kinematic analysis was performed based on the D-H parameters and the dynamic analysis was carried out to calculate various parameters such as velocity, acceleration, torque, and energy using the Newton-Euler equation of motion and Lagrange's equation. In an attempt to assess the efficacy of the analyzed human motion pattern it was compared to the virtual motion pattern created by the joint interpolation method. Results: To demonstrate the efficacy of the human arm motion mechanical and dynamical analyses were performed, followed by the comparison with the virtual robot motion path that was created by the joint interpolation method. Consequently, the human arm was observed to be in motion while the elbow was bent. In return this contributed to the increase of the manipulability and decrease of gravity and torque being exerted on the elbow. In addition, the energy required for the motion decreased. Such phenomenon was more apparent under vertical motion than horizontal motion patterns, and in shorter paths than in longer ones. Thus, one can minimize the abrasion of joints by lowering the stress applied to the bones, muscles, and joints. From the perspectives of energy and durability, the robot arm will be able to utilize its motor most effectively by adopting the motion pattern of human arm. Conclusions: By applying the motion pattern of human arm to the robot arm motion, increase in efficiency and durability is expected, which will eventually produce robots capable of moving in an energy-efficient manner.