• Title/Summary/Keyword: Roadbed reinforcement

Search Result 32, Processing Time 0.024 seconds

Application on Geotextiles for the Roadbed Reinforcement of the Concrete Track Rehabilitation (콘크리트궤도 개량공사시 노반 보강을 위한 토목섬유의 적용)

  • Lee, Il-Wha;Jang, Seung-Yup;Han, Sung-Wu;Kim, Yong-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1802-1806
    • /
    • 2007
  • The most important factor is the roadbed bearing capacity at concrete track construction. Particularly, in case of rehabilitation, it is essential to secure the uniform roadbed stiffness to prevent the irregular settlement. In this study, reinforced effect of the geotextiles is investigated which is applied to concrete track rehabilitation. The geotextiles is installed two or three layers as the condition of the ground and structure. The reinforced effect of geotextiles is confirmed by the strain gage attached on the geotextiles surface.

  • PDF

Seismic Stability Evaluation of Sand Ground with Organic Soil by Using Shaking Table Test (진동대 시험을 이용한 유기질토가 협재된 모래지반의 내진 안정성 평가)

  • Yongjin Chung;Youngchul Baek;Donghyuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.5
    • /
    • pp.13-20
    • /
    • 2023
  • The Gangneung region has an environment suitable for the formation of organic soil, and there is an alluvial layer in which sedimentary sand layers are distributed on the upper and lower parts of the organic soil. In order to evaluate the seismic safety of the railway roadbed passing through the Gangneung area, a railway roadbed and ground model considering the similarity ratio was fabricated, a shaking table test was conducted, and the seismic stability was evaluated by comparing the effective stress analysis results. The applied seismic waves were artificial seismic waves, Gyeongju seismic waves, Borah seismic waves, Nahanni seismic waves, and Tabas seismic waves. It became. Due to the ground reinforcement effect by jet grouting applied to the lower ground of the new roadbed, the displacement of the new roadbed was found to be reduced from a minimum of 33.7% to a maximum of 56.7% compared to the existing roadbed. The shaking table test results were verified by effective stress analysis using the Finn model of the Flac program, and showed a similar trend to the shaking table test values.

A Study of Reinforcement of Railway Structure Approaches in Conventional line (기존선 철도구조물 접속부의 보강에 대한 고찰)

  • Park, Joon-Oh;Lee, Sang-Bae;Kim, Kwan-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.442-452
    • /
    • 2007
  • Korean trains pass many mountain areas, so the volume of structures like bridge and tunnel has large part of railway lines. Train speed-up naturally needs a straight line in railway, then structures are increasing, and this influences passenger's comfort and the safety of operation, and it needs more track maintenance. The stiffness of bridge and tunnel is higher than the soil in the roadbed in spite of dynamic difference in vibration and displacement. Differences in stiffness have more dynamic effects and increase the deformation and destruction in the track and roadbed. This study will measure periodically to structure's approaches which have very fast track irregularity and analyze dynamic differences and track irregularity near structure's approaches, so realize the cause of track irregularity of structure's approaches and use basic data for reasonably strengthening method of structure's approaches.

  • PDF

Structure stability study for existing subway tunnel segment of Seoul-Busan high-speed railroad (Daegu - Busan) construction (경부고속철도(대구-부산) 도심통과 노반신설 공사중 기존 지하철 터널구간의 구조적 안정성 검토)

  • Kong, Byung-Seung;Kim, Min-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1752-1759
    • /
    • 2007
  • In the new Seoul-Busan high speed railroad construction specially city center passage roadbed establishment is recommended the staibility for the existing subway tunnel segments of Busan subway line No. 1 and No.2. regarding the appearance condition, a quality condition and the durability of the objective facility site exact inspection, and it evaluates the numerical analysis which uses MIDAS GTS it leads and there is the objective of the place where the stability of the objective facility and this tunnel it investigates. To immediacy of the on-the-spot inspection result whole facility it is a condition where the reinforcement which is simple not to be hindrance is necessary, 2nd Line case it is a condition which transfer is good but the general defect and the damage which occur from the tunnel of NATM type were confirmed part. While roadbed establishment constructing that the continuous maintenance is necessary, it is judged. The result of 1st, 2nd Line maximum sinkage, unequal sinkage and the lining stress of numerical analysis are within permission and the damage degree is appearing with the fact that the degree it will can disregard it is slight. But it enforces necessary Pre-grouting in order to minimize an actual tunnel face conduct and when the tunnel is excavated it is judged with the fact that necessary to minimize the outflow possibility.

  • PDF

Analysis of Reinforcement Effect with Geotextile types on Soft Ground (연약노반상에서의 토목섬유 적용에 따른 보강효과 분석)

  • Lee Jin-Wook;Choi Chan-Yong;Lee Seong-Hyeok
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.69-75
    • /
    • 2006
  • In this study, Several types of geotextile was used on the selected track-bed. The use of geotextile prove a economical and efficientmean to prevent the problem of mud-pumping and settlement. Field testing sections from Mock-haeng to Dong-ryang in the Chungbuk lines in Korea were selected to investigate in current condition the of track and roadbed. This testing site was divided into 5 sections. In the four sections, different types of geotextiles were installed. In order to estimate for performance of the reinforced section with geotextiles on the soft ground, four different geotextiles were installed and compared with no reinforced section. Also, after the installation, mud-pumping, settlement of elastic or plastic sleeper, failure of track, wheel-loads, and earth pressures were investigated. The following is the summaries from the field tests. As a conclusion, According to naked eyes investigation, mud pumping didn't happen at reinforced sections, but no reinforced section was happen to a top of track for 6 months. And Elastic displacements at the reinforced and no reinforced section were about $30.7\%\;and\;73.8\%,$ respectively. Also, It was found that plastic displacement in reinforced section was retrained about $50\%$ more than that in no reinforced section.

The Reinforcement Effect of Woven Geotextiles for Railway Roadbed High-Embankment on Soft Ground by the Limit Equilibrium Analysis (한계평형해석에 의한 연약지반 위의 철도노반 고성토를 위한 직포 보강 효과)

  • Kim, You-Seong;Choi, Jae-Seon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.27-37
    • /
    • 2010
  • Woven geotextiles (polyester mats) reinforcement is generally used to improve traffic ability, bearing capacity, and slope stability for embankment construction on soft ground. Cases of two high-strength woven geotextiles reinforcement layers are introduced in the present paper, which has been successfully constructed for rail road embankment on soft ground. According to the case results based on the limit equilibrium analyses of slope stability, the two high-strength woven geotextiles reinforcement layers on the soft ground can substantially increase the stability of the embankment by about 25%, improve the safety factor from 0.91 to 1.14, and significantly reduce the embankment construction duration at least 2 months. Therefore, the application of high-strength woven geotextiles is found to be useful for in-situ cases having the lack of construction duration and stability, as a soft ground improvement.

  • PDF

An Analysis of Stresses and Behaviors in the Geotextile-Reinforced Soil Structures (토목섬유 보강 구조물의 응력 및 거동 해석)

  • 고홍석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.94-108
    • /
    • 1988
  • The use of geotextile as reinforcing materials in soil structures has become widespread throughout the world. Geotextile reinforcement has been used in retaining walls, roadbed, embankment stabilization and especially reinforcement of soft foundation, and so on, In the past, however, its design and construction have been performed empirically. In this study, laboratory model tests were carried out in order to investigate the effects of geotextile rein- forcement on vertical and horizontal displacement and other characteristics in soft founda- tions. The experiments were executed in eight treatments ;no geotextile between embank - ment and subsoils, and seven geotextiles with different tensile strength. And such factors as the loading conditions, the tensile strength of geotextiles, the ingredient of geotextiles and the elapsed time were investigate in this study. And the analytical method were executed in order to study the stress and behavior of geotextile - reinforced soil structure by the nonlinear elasto - plastic finite element model. The following conclusions were drawn from this study. 1. Geotextile reinforcement reduced the effects of banking loads on subsoils more effectively with the increase of their tensile strength. 2. As the tensile strength of geotextiles was increase, the rate of the initial vertical disp - lacements of loading plate was reduced inverse proportional to loads, Rowever, the effect of loading was reduced when the loads exceed a certain limits, 3. The effect of reinforcement of nonwoven geotextile was 1.5-4.5 times larger than that of the woven geotextile with equivalent tensile strength. 4. The increased bearing capacity and the reduced settlement are proportioned as the tensile strength of geotextile. 5. The settlement at the long time loading were developed almost all, were completed after 10 days and the additional settlement were not developed since then. 6. The nonlinear elasto - plastic finite element method are accurate to predict the stresses and behayior of geotextile - reinforced soil structures.

  • PDF

Analysis on the Reinforcement Effect for Large Type Sleeper on Transition zone between Earthwork and Tunnel (터널/토공 접속부에 대한 대형침목 보강효과 분석)

  • Lee, Jin-Wook;Choi, Chan-Yong;Lee, Il-Wha
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1279-1286
    • /
    • 2006
  • It is very important to pay careful attention to construction of earthwork/tunnel transition zone for railway. The transition zone of the railway is the section which roadbed stiffness is suddenly varied. Differences in stiffness have dynamic effects and these increase the forces in the track and the extent of deformation. In this study, performance of transition zone was investigated through the field tests. The wheel loads and sleeper settlement were measured after installing field testing sections.

  • PDF

Evaluation of Deformation Characteristics for Bridge/Earthwork Transition Reinforcement Methods Considering Moving Load (이동하중을 고려한 교량/토공 접속부 보강방안별 변형특성 평가)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Kang, Tae-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.298-303
    • /
    • 2010
  • The transition zone of the railway is the section which roadbed stiffness is suddenly varied like as tunnel-earthwork, bridge-earthwork and concrete track-ballasted track. There are about 450 tunnel-bridge transition sections on Kyungbu high-speed railway line. It is very important to pay careful attention to construction of these transition zones, in order to secure the train running safety. So, we developed a finite element model of the moving wheel loading to simulate the behavior of bridge-earthwork transitions in this paper. The most distinctive characteristics of the model proposed is to simulate the real wheel behavior on rail. And the main analysis object is to evaluate and compare the deformation characteristics of the transition zone according to the reinforcement methods and length of transition zone which is adopted to high-speed railway. Based on the analysis results, we assessed the effect of the reinforcements on the transition zone of high-speed railway.

Reinforcement Effect of Rapid Hardening Composite Mat for Protect Railway Slope in Operation (운영중인 철도비탈면 보호를 위한 초속경 복합매트 보강 효과)

  • Kang, Tae-Hee;Jung, Hyuk-Sang;Kim, Jin-Hwan;Back, In-Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.151-163
    • /
    • 2021
  • This paper is dealt with railway slope stability for slope reinforcement using a geosynthetic concrete composite mat(GCCM). Recently, according to a change in weather caused by global warming, train operation has been restricted by the loss of backfill slope at the roadbed, which is consists of gravel, due to typhoons and heavy rainfall. In addition, the amount of damage is getting more significant than the cost of restoration, and the safety of workers is worried. In order to improve this limitation, a slope stability analysis was applied with a rapid hardening composite mat so that it can quickly secure a construction surface with increased workability and work stability and reduce maintenance costs by preventing re-loss in case of heavy rain and fundamentally blocking vegetation. As a result of the analysis, it was confirmed that the increase in safety factor was confirmed when the rapid harding composite mat was applied.