• Title/Summary/Keyword: Road vulnerability

Search Result 42, Processing Time 0.019 seconds

Vulnerable Analysis of Emergency Medical Facilities based on Accessibility to Emergency Room and 119 Emergency Center (응급실과 119 안전센터의 접근성을 고려한 응급의료 취약지 분석)

  • Jeon, Jeongbae;Park, Meejeong;Jang, Dodam;Lim, Changsu;Kim, Eunja
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.4
    • /
    • pp.147-155
    • /
    • 2018
  • The purpose of this study was to identify vulnerable area of emergency medical care. In the existing method, the emergency medical vulnerable area is set as an area that can not reach the emergency room within 30 minutes. In this study, we set up an area that can not reach within 30 minutes including the accessibility of 119 emergency center. To accomplish this, we obtained information on emergency room and 119 emergency center through Open API and constructed road network using digital map to perform accessibility analysis. As a result, 509 emergency room are located nationwide, 78.0% of them are concentrated in the region, 1,820 emergency center are located, and 61.0% of them are located in rural areas. The average access time from the center of the village to the emergency room was analyzed as 15.3 minutes, and the average access time considering the 119 emergency center was 21.8 minutes, 6.5 minutes more. As a result of considering the accessibility of 119 emergency center, vulnerable areas increased by 2.5 times, vulnerable population increased by 2.0 times, and calculating emergency medical care vulnerable areas, which account for more than 30% of the urban unit population, it was analyzed that it increased from 17 to 34 cities As a further study, it will be necessary to continuously monitor and research the real-time traffic information, medical personnel, medical field, and ambulance information to reflect the reality and to diagnose emergency medical care in the future.

Evaluation of Flood Regulation Service of Urban Ecosystem Using InVEST mode (InVEST 모형을 이용한 도시 생태계의 홍수 조절서비스 평가)

  • Lee, Tae-ho;Cheon, Gum-sung;Kwon, Hyuk-soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.6
    • /
    • pp.51-64
    • /
    • 2022
  • Along with the urbanization, the risk of urban flooding due to climate change is increasing. Flood regulation, one of the ecosystem services, is implemented in the different level of function of flood risk mitigation by the type of ecosystem such as forests, arable land, wetlands etc. Land use changes due to development pressures have become an important factor in increasing the vulnerability by flash flood. This study has conducted evaluating the urban flood regulation service using InVEST UFRM(Urban Flood Risk Model). As a result of the simulation, the potential water retention by ecosystem type in the event of a flash flood according to RCP 4.5(10 year frequency) scenario was 1,569,611 tons in urbanized/dried areas, 907,706 tons in agricultural areas, 1,496,105 tons in forested areas, 831,705 tons in grasslands, 1,021,742 tons in wetlands, and 206,709 tons in bare areas, the water bodies was estimated to be 38,087 tons. In the case of more severe 100-year rainfall, 1,808,376 tons in urbanized/dried areas, 1,172,505 tons in agricultural areas, 2,076,019 tons in forests, 1,021,742 tons in grasslands, 47,603 tons in wetlands, 238,363 tons in bare lands, and 52,985 tons in water bodies. The potential economic damage from flood runoff(100 years frequency) is 122,512,524 thousand won in residential areas, 512,382,410 thousand won in commercial areas, 50,414,646 thousand won in industrial areas, 2,927,508 thousand won in Infrastructure(road), 8,907 thousand won in agriculture, Total of assuming a runoff of 50 mm(100 year frequency) was estimated at 688,245,997 thousand won. In a conclusion. these results provided an overview of ecosystem functions and services in terms of flood control, and indirectly demonstrated the possibility of using the model as a tool for policy decision-making. Nevertheless, in future research, related issues such as application of models according to various spatial scales, verification of difference in result values due to differences in spatial resolution, improvement of CN(Curved Number) suitable for the research site conditions based on actual data, and development of flood damage factors suitable for domestic condition for the calculation of economic loss.