• Title/Summary/Keyword: Road under bridges

Search Result 53, Processing Time 0.023 seconds

Developing an Estimation Model for Safety Rating of Road Bridges Using Rule-based Classification Method (규칙 기반 분류 기법을 활용한 도로교량 안전등급 추정 모델 개발)

  • Chung, Sehwan;Lim, Soram;Chi, Seokho
    • Journal of KIBIM
    • /
    • v.6 no.2
    • /
    • pp.29-38
    • /
    • 2016
  • Road bridges are deteriorating gradually, and it is forecasted that the number of road bridges aging over 30 years will increase by more than 3 times of the current number. To maintain road bridges in a safe condition, current safety conditions of the bridges must be estimated for repair or reinforcement. However, budget and professional manpower required to perform in-depth inspections of road bridges are limited. This study proposes an estimation model for safety rating of road bridges by analyzing the data from Facility Management System (FMS) and Yearbook of Road Bridges and Tunnel. These data include basic specifications, year of completion, traffic, safety rating, and others. The distribution of safety rating was imbalanced, indicating 91% of road bridges have safety ratings of A or B. To improve classification performance, five safety ratings were integrated into two classes of G (good, A and B) and P (poor ratings under C). This rearrangement was set because facilities with ratings under C are required to be repaired or reinforced to recover their original functionality. 70% of the original data were used as training data, while the other 30% were used for validation. Data of class P in the training data were oversampled by 3 times, and Repeated Incremental Pruning to Produce Error Reduction (RIPPER) algorithm was used to develop the estimation model. The results of estimation model showed overall accuracy of 84.8%, true positive rate of 67.3%, and 29 classification rule. Year of completion was identified as the most critical factor on affecting lower safety ratings of bridges.

Dynamic Behaviors of Highway Bridges under Multi-Traffic Loads (차량통행특성에 따른 도로교의 동적거동변화)

  • 김상효;이상호;윤성호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.185-191
    • /
    • 1997
  • The study presents the linear dynamic analysis of bridges under vehicular movement to examine the performance characteristics due to the various structural and loading conditions. The road surface roughness and bridge-vehicle interactions are considered. The road surface profiles for the approaching roadway and bridge decks are generated from power spectral density functions for different road roughness conditions. A new filtering method using the wheel trace is proposed to obtain the more rational bridge-vehicle interactions from the randomly generated road surface. The dynamic responses of various bridges designed according to current design practice are examined, in which important structural parameters(such as span length, girder spacing, etc.) are considering systematically. In addition, the traffic conditions of multi-truck traveling either consecutively on the same lane or side-by-side on the adjacent lanes are also evaluated.

  • PDF

Investigation of Potential Fire Hazard Resources of Bridges on National Routes by Field and Web-based Satellite (현장 및 실내조사를 통한 일반국도교량의 화재위험요소 분석)

  • Kim, Yongjae;Kim, Seungwon;Ann, Hojune;Kong, Jungsik;Park, Cheolwoo
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.105-115
    • /
    • 2017
  • PURPOSES : The occurrence of unexpected disasters, including fire events, increases as the road network becomes complicated and traffic volume increases. When a fire event occurs on and under bridges, the damage extensively influences direct damage to structures, vehicles, and human life and secondary socioeconomic issues owing to traffic blockage. This study investigated potential fire-hazard risks on bridges of the Korean national route road. METHODS : The investigation was conducted using field investigation and analysis with satellite pictures and road views from commercial websites and the Bridge Management System (BMS). From the filed investigation, various potential fire resources were identified. The satellite pictures and road views were helpful in measuring and recognizing conditions underneath bridges, stowage areas, etc. RESULTS : There are various potential fire resources underneath bridges such as piled agricultural products, parked petroleum tanks, construction equipment, and attached high-voltage cables. A total of 94.6% of bridges have underneath clearances of less than 15 m. A bridge underneath volume that can stow a potential fire hazard resource was $7,332m^3$ on average, and most bridges have about $4,000m^3$ of space. Based on the BMS data, the amounts of PSC and steel girders were 29% and 25%, respectively. CONCLUSIONS : It was found that the amount of stowed potential fire hazard resources was proportional to the underneath space of bridges. Most bridges have less than 15 m of vertical clearance that can be considered as a critical value for a bridge fire. The fire risk investigation results should be helpful for developing bridge fire-protection tools.

Amber Information Design to Keep Safety-Driving Under Road Structure at Local-Scale Geographic (국지지역 도로 기반 시설에서 안전운전을 위한 경보 정보 설계)

  • Park, Jung-Chan;Hong, Gyu- Jang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.48-55
    • /
    • 2009
  • In order to keep safe driving conditions under road networks, there are several formations such as road structure, road surface condition, traffic occupancy and supplement of an accurate information of traffic status ahead To support safe-driving on each road formation, each formation is supplied with various information to help the driver. However, in some cases like rapid status change at local-scale geography, traffic information systems often displays insufficient information because of the lack of information correlation. In order to accurately aware the driver, all road formation must be in sync. It is important to supply accurate information to the driver because this information directly impacts the drivers on the road. This paper discusses the amber information to keep the least safety driving over road formations including tunnels and bridges. This paper also will propose the informations for safe-driving conditions, information linkage on the road and rule-base safety information, as ITS technology, being displayed for all drivers under the worst weather conditions.

An Investigation on the Analysis of Curved Rahmen Bridge (곡선 R.C라멘교의 해석적 고찰)

  • Oh, Sae-Joon;Chung, Won-Ki;Park, Myoung-Gyun;Choi, Sung-Kweon;Lee, Eun-Ho;Park, Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.498-501
    • /
    • 2006
  • R.C. Rahmen bridges have been widely constructed in the location of interchange or narrow road crossing. In addition, skewed or curved rahmen bridges are mostly constructed in comparison with normal rahmen bridges for the purpose of maintaining the route of road or considering the beauty of bridge. However, due to the functional characteristics, rahmen bridges are sustained under the direct vehicle loads and the side directional earth pressure so that the stress concentration with respect to the geometrical eccentricity can be occurred if rahmen bridges are constructed in large amount of skew. In this investigation, the behavior of skewed rahmen bridges which is located in curved route has been analysed to investigate the additional effects on the change of stress concentration. As a result, it is judged that the stress of curved rahmen bridges is more concentrated than the stress of straight rahmen bridges in the region of obtuse angle. However, in the middle of slab, the curve does not affect on the stress concentration.

  • PDF

Dynamic response of railway bridges traversed simultaneously by opposing moving trains

  • Rezvani, Mohammad Ali;Vesali, Farzad;Eghbali, Atefeh
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.713-734
    • /
    • 2013
  • Bridges are vital components of the railroads. High speed of travel, the periodic and oscillatory nature of the loads and the comparable vehicle bridge weight ratio distinguish the railway bridges from the road bridges. The close proximity between estimations by some numerical methods and the measured data for the bridge-vehicle dynamic response under the moving load conditions has boosted the confidence in the numerical analyses. However, there is hardly any report regarding the responses of the railway bridges under the effect of the trains entering from the opposite directions while running at unequal speed and having dissimilar geometries. It is the purpose of this article to present an analytical method for the dynamic analysis of the railway bridges under the influence of two opposing series of moving loads. The bridge structural damping and many modes of vibrations are included. The concept of modal superposition is used to solve for the system motion equations. The method of solution is indeed a computer assisted analytical solution. It solves for the system motion equations and gives output in terms of the bridge deflection. Some case studies are also considered for the validation of the proposed method. Furthermore, the effects of varying some parameters such as the distance between the bogies, and the bogie wheelset distance are studied. Also, the conditions of resonance and cancellation in the dynamic response for a variety of vehicle-bridge specifications are investigated.

Impact Effects of Multi-Girder Steel Bridges Under Various Traffic Conditions (차량하중에 의한 다주형 강판형교의 충격계수 변화에 관한 연구)

  • 김상효;허진영
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.233-240
    • /
    • 1997
  • The study presents the linear dynamic analysis of multi-girder steel bridges under vehicular movement to examine the performance characteristics due to the various structural and loading conditions. The road surface roughness and bridge-vehicle interactions are considered. The road surface profiles for the approaching roadway and bridge decks are generated from power spectral density functions for different road roughness conditions. A new filtering method using the wheel trace is proposed to obtain the more rational bridge-vehicle interactions from the randomly generated road surface. The possible settlement condition between the bridge deck and approaching roadway is also included. The dynamic responses of various bridges designed according to current design practice are examined, in which important structural parameters(such as span length, girder spacing, etc.) are considered systematically. In addition to the basic loading conditions due to a single truck passing on the bridge, the traffic conditions of multi-truck traveling either consecutively on the same lane or side-by-side on the adjacent lanes are also evaluated.

  • PDF

Impact study for multi-girder bridge based on correlated road roughness

  • Liu, Chunhua;Wang, Ton-Lo;Huang, Dongzhou
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.259-272
    • /
    • 2001
  • The impact behavior of a multigirder concrete bridge under single and multiple moving vehicles is studied based on correlated road surface characteristics. The bridge structure is modeled as grillage beam system. A 3D nonlinear vehicle model with eleven degrees of freedom is utilized according to the HS20-44 truck design loading in the American Association of State Highway and Transportation Officials (AASHTO) specifications. A triangle correlation model is introduced to generate four classes of longitudinal road surface roughness as multi-correlated random processes along deck transverse direction. On the basis of a correlation length of approximately half the bridge width, the upper limits of impact factors obtained under confidence level of 95 percent and side-by-side three-truck loading provide probability-based evidence for the evaluation of AASHTO specifications. The analytical results indicate that a better transverse correlation among road surface roughness generally leads to slightly higher impact factors. Suggestions are made for the routine maintenance of this type of highway bridges.

Dynamic analysis of wind-vehicle-bridge systems using mutually-affected aerodynamic parameters

  • Wang, Bin;Xu, You-Lin;Li, Yongle
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.191-211
    • /
    • 2015
  • Several frameworks for the dynamic analysis of wind-vehicle-bridge systems were presented in the past decade to study the safety or ride comfort of road vehicles as they pass through bridges under crosswinds. The wind loads on the vehicles were generally formed based on the aerodynamic parameters of the stationary vehicles on the ground, and the wind loads for the pure bridge decks without the effects of road vehicles. And very few studies were carried out to explore the dynamic effects of the aerodynamic interference between road vehicles and bridge decks, particularly for the moving road vehicles. In this study, the aerodynamic parameters for both the moving road vehicle and the deck considering the mutually-affected aerodynamic effects are formulized firstly. And the corresponding wind loads on the road vehicle-bridge system are obtained. Then a refined analytical framework of the WVB system incorporating the resultant wind loads, a driver model, and the road roughness in plane to fully consider the lateral motion of the road vehicle under crosswinds is proposed. It is shown that obvious lateral and yaw motions of the road vehicle occur. For the selected single road vehicle passing a long span bridge, slight effects are caused by the aerodynamic interference between the moving vehicle and deck on the dynamic responses of the system.

Indian Railways: Recent Trends in Control Accidents and Safety Measures for Passengers

  • Kumar, Katta Ashok
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.2 no.4
    • /
    • pp.48-55
    • /
    • 2014
  • Indian railways has been regularly in the news albeit for the wrong reasons. The frequency with which train accidents have been taking place has led to serious doubts in the public mind about the safety of rail travel and also the health of the network. Against this background, an attempt is made in this paper to assess the trends in railway accidents for the period from 2000-01 to 2009-10. The paper also highlighted the various measures taken by IR to prevent accidents to ensure safety to the public.