• Title/Summary/Keyword: Road segmentation

Search Result 108, Processing Time 0.029 seconds

A Study on the Implement of Image Recognition the Road Traffic Safety Information Board using Nearest Neighborhood Decision Making Algorithm (최근접 이웃 결정방법 알고리즘을 이용한 도로교통안전표지판 영상인식의 구현)

  • Jung Jin-Yong;Kim Dong-Hyun;Lee So-Haeng
    • Management & Information Systems Review
    • /
    • v.4
    • /
    • pp.257-284
    • /
    • 2000
  • According as the drivers increase who have their cars, the comprehensive studies on the automobile for the traffic safety have been raised as the important problems. Visual Recognition System for radio-controled driving is a part of the sensor processor of Unmanned Autonomous Vehicle System. When a driver drives his car on an unknown highway or general road, it produces a model from the successively inputted road traffic information. The suggested Recognition System of the Road Traffic Safety Information Board is to recognize and distinguish automatically a Road Traffic Safety Information Board as one of road traffic information. The whole processes of Recognition System of the Road Traffic Safety Information Board suggested in this study are as follows. We took the photographs of Road Traffic Safety Information Board with a digital camera in order to get an image and normalize bitmap image file with a size of $200{\times}200$ byte with Photo Shop 5.0. The existing True Color is made up the color data of sixteen million kinds. We changed it with 256 Color, because it has large capacity, and spend much time on calculating. We have practiced works of 30 times with erosion and dilation algorithm to remove unnecessary images. We drawing out original image with the Region Splitting Technique as a kind of segmentation. We made three kinds of grouping(Attention Information Board, Prohibit Information Board, and Introduction Information Board) by RYB( Red, Yellow, Blue) color segmentation. We minimized the image size of board, direction, and the influence of rounding. We also minimized the Influence according to position. and the brightness of light and darkness with Eigen Vector and Eigen Value. The data sampling this feature value appeared after building the learning Code Book Database. The suggested Recognition System of the Road Traffic Safety Information Board firstly distinguished three kinds of groups in the database of learning Code Book, and suggested in order to recognize after comparing and judging the board want to recognize within the same group with Nearest Neighborhood Decision Making.

  • PDF

A Study on the Performance of Enhanced Deep Fully Convolutional Neural Network Algorithm for Image Object Segmentation in Autonomous Driving Environment (자율주행 환경에서 이미지 객체 분할을 위한 강화된 DFCN 알고리즘 성능연구)

  • Kim, Yeonggwang;Kim, Jinsul
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.9-16
    • /
    • 2020
  • Recently, various studies are being conducted to integrate Image Segmentation into smart factory industries and autonomous driving fields. In particular, Image Segmentation systems using deep learning algorithms have been researched and developed enough to learn from large volumes of data with higher accuracy. In order to use image segmentation in the autonomous driving sector, sufficient amount of learning is needed with large amounts of data and the streaming environment that processes drivers' data in real time is important for the accuracy of safe operation through highways and child protection zones. Therefore, we proposed a novel DFCN algorithm that enhanced existing FCN algorithms that could be applied to various road environments, demonstrated that the performance of the DFCN algorithm improved 1.3% in terms of "loss" value compared to the previous FCN algorithms. Moreover, the proposed DFCN algorithm was applied to the existing U-Net algorithm to maintain the information of frequencies in the image to produce better results, resulting in a better performance than the classical FCN algorithm in the autonomous environment.

The Recognition and Segmentation of the Road Surface State using Wavelet Image Processing (웨이블릿 영상처리에 의한 도로표면상태 인식 및 분류)

  • Han, Tae-Hwan;Ryu, Seung-Ki;Song, Wonseok;Lee, Seung-Rae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.26-34
    • /
    • 2008
  • This study focus on segmentation process that classifies road surfaces into 5 different categories, dry, wet water, icy, and snowy surfaces by analyzing asphalt-paved road images taken in daylight. By using the polarization coefficients, the proportions of horizontally polarized components to vertically polarized components, regions with over 1.3 polarization coefficients are classified as wet surfaces. Except for wet surfaces, the decision process a lies time-frequency analysis to other parts by using the third order wavelet packet transform. In addition, by using the average frequency characteristics of dry and icy surfaces from image templates, decide which is closer to a test image, and finally identify dry and icy surfaces. It is confirmed that the reposed estimation and segmentation of recognition on various images. This can be interpreted as an indication that image-only mad surface condition supervision is probable.

Real Time Road Lane Detection with RANSAC and HSV Color Transformation

  • Kim, Kwang Baek;Song, Doo Heon
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.187-192
    • /
    • 2017
  • Autonomous driving vehicle research demands complex road and lane understanding such as lane departure warning, adaptive cruise control, lane keeping and centering, lane change and turn assist, and driving under complex road conditions. A fast and robust road lane detection subsystem is a basic but important building block for this type of research. In this paper, we propose a method that performs road lane detection from black box input. The proposed system applies Random Sample Consensus to find the best model of road lanes passing through divided regions of the input image under HSV color model. HSV color model is chosen since it explicitly separates chromaticity and luminosity and the narrower hue distribution greatly assists in later segmentation of the frames by limiting color saturation. The implemented method was successful in lane detection on real world on-board testing, exhibiting 86.21% accuracy with 4.3% standard deviation in real time.

Driving Assist System using Semantic Segmentation based on Deep Learning (딥러닝 기반의 의미론적 영상 분할을 이용한 주행 보조 시스템)

  • Kim, Jung-Hwan;Lee, Tae-Min;Lim, Joonhong
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.147-153
    • /
    • 2020
  • Conventional lane detection algorithms have problems in that the detection rate is lowered in road environments having a large change in curvature and illumination. The probabilistic Hough transform method has low lane detection rate since it exploits edges and restrictive angles. On the other hand, the method using a sliding window can detect a curved lane as the lane is detected by dividing the image into windows. However, the detection rate of this method is affected by road slopes because it uses affine transformation. In order to detect lanes robustly and avoid obstacles, we propose driving assist system using semantic segmentation based on deep learning. The architecture for segmentation is SegNet based on VGG-16. The semantic image segmentation feature can be used to calculate safety space and predict collisions so that we control a vehicle using adaptive-MPC to avoid objects and keep lanes. Simulation results with CARLA show that the proposed algorithm detects lanes robustly and avoids unknown obstacles in front of vehicle.

Developing a Solution to Improve Road Safety Using Multiple Deep Learning Techniques

  • Humberto, Villalta;Min gi, Lee;Yoon Hee, Jo;Kwang Sik, Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.85-96
    • /
    • 2023
  • The number of traffic accidents caused by wet or icy road surface conditions is on the rise every year. Car crashes in such bad road conditions can increase fatalities and serious injuries. Historical data (from the year 2016 to the year 2020) on weather-related traffic accidents show that the fatality rates are fairly high in Korea. This requires accurate prediction and identification of hazardous road conditions. In this study, a forecasting model is developed to predict the chances of traffic accidents that can occur on roads affected by weather and road surface conditions. Multiple deep learning algorithms taking into account AlexNet and 2D-CNN are employed. Data on orthophoto images, automatic weather systems, automated synoptic observing systems, and road surfaces are used for training and testing purposes. The orthophotos images are pre-processed before using them as input data for the modeling process. The procedure involves image segmentation techniques as well as the Z-Curve index. Results indicate that there is an acceptable performance of prediction such as 65% for dry, 46% for moist, and 33% for wet road conditions. The overall accuracy of the model is 53%. The findings of the study may contribute to developing comprehensive measures for enhancing road safety.

Moving Object Segmentation-based Approach for Improving Car Heading Angle Estimation (Moving Object Segmentation을 활용한 자동차 이동 방향 추정 성능 개선)

  • Chiyun Noh;Sangwoo Jung;Yujin Kim;Kyongsu Yi;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.130-138
    • /
    • 2024
  • High-precision 3D Object Detection is a crucial component within autonomous driving systems, with far-reaching implications for subsequent tasks like multi-object tracking and path planning. In this paper, we propose a novel approach designed to enhance the performance of 3D Object Detection, especially in heading angle estimation by employing a moving object segmentation technique. Our method starts with extracting point-wise moving labels via a process of moving object segmentation. Subsequently, these labels are integrated into the LiDAR Pointcloud data and integrated data is used as inputs for 3D Object Detection. We conducted an extensive evaluation of our approach using the KITTI-road dataset and achieved notably superior performance, particularly in terms of AOS, a pivotal metric for assessing the precision of 3D Object Detection. Our findings not only underscore the positive impact of our proposed method on the advancement of detection performance in lidar-based 3D Object Detection methods, but also suggest substantial potential in augmenting the overall perception task capabilities of autonomous driving systems.

Real-Time Vehicle Detection in Traffic Scenes using Multiple Local Region Information (국부 다중 영역 정보를 이용한 교통 영상에서의 실시간 차량 검지 기법)

  • 이대호;박영태
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.163-166
    • /
    • 2000
  • Real-time traffic detection scheme based on Computer Vision is capable of efficient traffic control using automatically computed traffic information and obstacle detection in moving automobiles. Traffic information is extracted by segmenting vehicle region from road images, in traffic detection system. In this paper, we propose the advanced segmentation of vehicle from road images using multiple local region information. Because multiple local region overlapped in the same lane is processed sequentially from small, the traffic detection error can be corrected.

  • PDF

A Survey of Real-time Road Detection Techniques Using Visual Color Sensor

  • Hong, Gwang-Soo;Kim, Byung-Gyu;Dogra, Debi Prosad;Roy, Partha Pratim
    • Journal of Multimedia Information System
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • A road recognition system or Lane departure warning system is an early stage technology that has been commercialized as early as 10 years but can be optional and used as an expensive premium vehicle, with a very small number of users. Since the system installed on a vehicle should not be error prone and operate reliably, the introduction of robust feature extraction and tracking techniques requires the development of algorithms that can provide reliable information. In this paper, we investigate and analyze various real-time road detection algorithms based on color information. Through these analyses, we would like to suggest the algorithms that are actually applicable.

Road Lane Segmentation using Dynamic Programming for Active Safety Vehicles

  • Kang, Dong-Joong;Kim, Jin-Young;An, Hyung-keun;Ahn, In-Mo;Lho, Tae-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.98.3-98
    • /
    • 2002
  • Vision-based systems for finding road lanes have to operate robustly under a wide variety of environ-mental conditions including large amount of scene clutters. This paper presents a method for finding the lane boundaries by combining a local line extraction method and dynamic programming as a search tool. The line extractor obtains an initial position estimation of road lane boundaries from the noisy edge fragments. Dynamic programming then improves the initial approximation to an accurate configuration of lane boundaries. Input image frame is divided into a few sub-regions along the vertical direction. The local line extractor then performs to extract candidate lines of road lanes in the...

  • PDF