• Title/Summary/Keyword: Road safety information

Search Result 440, Processing Time 0.062 seconds

Development and Evaluation of Road Safety Information Contents Using Commercial Vehicle Sensor Data : Based on Analyzing Traffic Simulation DATA (사업용차량 센서 자료를 이용한 도로안전정보 콘텐츠 개발 : 교통시뮬레이션 자료 분석을 중심으로)

  • Park, Subin;Oh, Cheol;Ko, Jieun;Yang, Choongheon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.2
    • /
    • pp.74-88
    • /
    • 2020
  • A Cooperative Intelligent Transportation System (CITS) provides useful information on upcoming hazards in order to prevent vehicle collisions. In addition, the availability of individual vehicle travel information obtained from the CITS infrastructure allows us to identify the level of road safety in real time and based on analysis of the indicators representing the crash potential. This study proposes a methodology to derive road safety content, and presents evaluation results for its applicability in practice, based on simulation experiments. Both jerk and Stopping Distance Index (SDI) were adopted as safety indicators and were further applied to derive road section safety information. Microscopic simulation results with VISSIM show that 5% and 20% samples of jerk and SDI are sufficient to represent road safety characteristics for all vehicles. It is expected that the outcome of this study will be fundamental to developing a novel and valuable system to monitor the level of road safety in real time.

Lane Change Driving Analysis based on Road Driving Data (실도로 주행 데이터 기반 차선변경 주행 특성 분석)

  • Park, Jongcherl;Chae, Heungseok;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.1
    • /
    • pp.38-44
    • /
    • 2018
  • This paper presents an analysis on driving safety in lane change situation based on road driving data. Autonomous driving is a global trend in vehicle industry. LKAS technologies are already applied in commercial vehicle and researches about lane change maneuver have been actively studied. In autonomous vehicle, not only safety control issue but also imitating human driving maneuver is important. Driving data analysis in lane change situation has been usually dealt with ego vehicle information such as longitudinal acceleration, yaw rate, and steering angle. For this reason, developing safety index according to surrounding vehicle information based on human driving data is needed. In this research, driving data is collected from perception module using LIDAR, radar and RT-GPS sensors. By analyzing human driving pattern in lane change maneuver, safety index that considers both ego vehicle and surrounding vehicle state by using relative velocity and longitudinal clearance has been designed.

Analysis of the Effectiveness of Tunnel Traffic Safety Information Service Using RADAR Data Based on Surrogate Safety Measures (레이더 검지기 자료를 활용한 SSM 기반 터널 교통안전정보 제공 서비스 효과분석)

  • Yongju Kim;Jaehyeon Lee;Sungyong Chung;Chungwon Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.73-87
    • /
    • 2023
  • Furnishing traffic safety information can contribute to providing hazard warnings to drivers, thereby avoiding crashes. A smart road lighting platform that instantly recognizes road conditions using various sensors and provides appropriate traffic safety information has therefore been developed. This study analyzes the short-term traffic safety improvement effects of the smart road lighting's tunnel traffic safety information service using surrogate safety measures (SSM). Individual driving behavior was investigated by applying the vehicle trajectory data collected with RADAR in the Anin Avalanche 1 and 2 tunnel sections in Gangneung. Comparing accumulated speeding, speed variation, time-to-collision, and deceleration rate to avoid the crash before and after providing traffic safety information, all SSMs showed significant improvement, indicating that the tunnel traffic safety information service is beneficial in improving traffic safety. Analyzing potential crash risk in the subdivided tunnel and access road sections revealed that providing traffic safety information reduced the probability of traffic accidents in most segments. The results of this study will be valuable for analyzing the short-term quantitative effects of traffic safety information services.

A Study on the Development of Intelligent Transport System Center for Integrated Road Transport Information Service System (통합도로교통정보 서비스 체계 구현을 위한 교통정보센터 개발 연구)

  • Chung, Sung-Hak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.259-270
    • /
    • 2009
  • The objective of this study is to provide systematic design of the Korea's Integrated Road Transport System in intelligent transport systems. Integrated Road Transport System services support safety driving and traffic information for travellers, and rapid response of the system for emergency status not only dissemination of traffic for traffic but also flood, heavy snowfall, falling rocks, closed-road, collapse, accident and so on. Therefore, integrated road transport system service contributes national highway safety management system to the voice of the nation of integrated road transport system center service for user friendly.

Developing an Estimation Model for Safety Rating of Road Bridges Using Rule-based Classification Method (규칙 기반 분류 기법을 활용한 도로교량 안전등급 추정 모델 개발)

  • Chung, Sehwan;Lim, Soram;Chi, Seokho
    • Journal of KIBIM
    • /
    • v.6 no.2
    • /
    • pp.29-38
    • /
    • 2016
  • Road bridges are deteriorating gradually, and it is forecasted that the number of road bridges aging over 30 years will increase by more than 3 times of the current number. To maintain road bridges in a safe condition, current safety conditions of the bridges must be estimated for repair or reinforcement. However, budget and professional manpower required to perform in-depth inspections of road bridges are limited. This study proposes an estimation model for safety rating of road bridges by analyzing the data from Facility Management System (FMS) and Yearbook of Road Bridges and Tunnel. These data include basic specifications, year of completion, traffic, safety rating, and others. The distribution of safety rating was imbalanced, indicating 91% of road bridges have safety ratings of A or B. To improve classification performance, five safety ratings were integrated into two classes of G (good, A and B) and P (poor ratings under C). This rearrangement was set because facilities with ratings under C are required to be repaired or reinforced to recover their original functionality. 70% of the original data were used as training data, while the other 30% were used for validation. Data of class P in the training data were oversampled by 3 times, and Repeated Incremental Pruning to Produce Error Reduction (RIPPER) algorithm was used to develop the estimation model. The results of estimation model showed overall accuracy of 84.8%, true positive rate of 67.3%, and 29 classification rule. Year of completion was identified as the most critical factor on affecting lower safety ratings of bridges.

A Study on Safety Oriented System Design of Highway Advisory Radio Service (안전지향형 노변방송서비스 체계에 관한 연구)

  • Chung, Sung-Hak
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.113-121
    • /
    • 2009
  • The objective of this study is to develop highway advisory radio service for road safety oriented system design of the point by regional groups or geographical distributions. To develop these highway advisory radio service, traffic information provided service areas, responds for incident and accident, and road condition in service sections based on traffic information of highway advisory radio service. This study contributes to service of traffic information for safety driving, which is transport congestion areas and recognition of traffic congestion status in advanced traffic information service. As result of this study, systematic design of the advanced highway and traffic safety guides to management systems by highway advisory radio service.

Development of Message Broker-Based Real-Time Control Method for Road Traffic Safety Facilities Equipment and Devices Integrated Management System

  • JeongHo Kho;Eum Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.195-209
    • /
    • 2024
  • The current road traffic signal controller developed in the 1990s has limitations in flexibility and scalability due to power supply problems, various communication methods, and hierarchical black box structures for various equipment and devices installed to improve traffic safety for road users and autonomous cooperative driving. In this paper, we designed a road traffic safety facilities equipment and devices integrated management system that can cope with the rapidly changing future traffic environment by solving the using direct current(DC) and power supply problem through the power over ethernet(PoE) technology and centralized data-driven control through message broker technology. In addition, a data-driven real-time control method for road traffic safety facilities equipment and devices operating based on time series data was implemented and verified.

Development of driving simulator modules for driving safely (주행경제를 위한 드라이빙 시뮬레이터 모듈 연구)

  • Chung, Sung-Hak
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.11a
    • /
    • pp.569-578
    • /
    • 2008
  • The aim of this study is to propose economical safety driving speed index which those are geometric road status; examine the levels of which those cost-benefit of driving fuel expenditure; are search road safety design and operational technology for driving simulators. For the objective, we analyzed the current status of driving fuel expenditure and driving scenarios by the road alignments, and reviewed driving and technical specifications by the geometric types of road according to the implementation, and extended completion. Throughout the result of this study, diverse related driving information provision service, efficiently driving system is expected to be implemented in the national highway design system.

  • PDF

Eco-Speed Control Strategy for Automated Electric Vehicles on Urban Road (도심환경에서의 전기자동차 친환경 자율주행 속도제어 전략)

  • Heo, Seulgi;Jeong, Yonghwan;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.1
    • /
    • pp.32-37
    • /
    • 2018
  • This paper proposes autonomous speed control strategy for an Electric Vehicle on urban road. SNU campus road is used to reperesent urban road situation. Motor efficiency of driving on campus circulation road can be improved by controlling velocity properly. Given information of campus road, especially slope of road, acceleration is selected from candidate, considering consumed power, human factor and driving time. To apply urban situation, preceding vehicle is also considered. With preceding vehicle, acceleration is defined according to clearance and relative velocity. Acceleration is bounded in normal range. Proposed acceleration control method is activated with proper velocity range for campus circulation road. With acceleration control, motor efficiency becomes better than driving with constant vehicle. To evaluate the performance of proposed acceleration controller, simulation study is conducted via MATLAB.

Development of a DFSS Road-map Associated with the ISO 26262 Product Development Process (ISO 26262 제품개발 프로세스와 연계된 DFSS 로드-맵의 개발)

  • Hong, Sung-Hoon;Kwon, Hyuck Moo;Kim, Dong-Chun;Lee, Min Koo
    • IE interfaces
    • /
    • v.25 no.4
    • /
    • pp.393-404
    • /
    • 2012
  • Increasing safety requirements of automobile are asking companies to find out solutions, based on the ISO 26262 which is a functional safety standard. ISO 26262 is an adaptation of the IEC 61508 for automotive electric/electronic systems. ISO 26262 provides a V model for ECU (Electronic Control Unit) development process to secure safety against vehicle. It well describes the requirements, necessary works and their resulting products for each development phase. However, it is difficult to apply to product development for achieving functional safety in the electric/electronic systems of an automobile because it lacks explanation on the working steps to follow and the methodologies and tools to be used in each step. In this paper, we introduce the outline of the ISO 26262 product development process and present a DFSS (Design For Six Sigma) road-map based on the ISO 26262 product development process as a way to operate efficiently the ISO 26262 product development process. The DFSS road-map consists of five phases: Define, Measure, Analyze, Design, and Verify. The detailed activities, tools, inputs, and work products are given for each phase.