Object detection plays a crucial role in a self-driving system. With the advances of image recognition based on deep convolutional neural networks, researches on object detection have been actively explored. In this paper, we proposed a lightweight model of the mask R-CNN, which has been most widely used for object detection, to efficiently predict location and shape of various objects on the road environment. Furthermore, feature maps are adaptively re-calibrated to improve the detection performance by applying an attention module to the neural network layer that plays different roles within the mask R-CNN. Various experimental results for real driving scenes demonstrate that the proposed method is able to maintain the high detection performance with significantly reduced network parameters.
Angiography equipment is used to evaluate and treat coronary artery disease. As a common feature of equipment, radiation is used, and function development for dose reduction is being carried out by each company. Therefore, the difference depending on whether DCR installed in angiography equipment is used is analyzed from a radiological point of view to prove the effect. Among 431 patients who underwent coronary artery intervention from March 2021 to February 2023, 250 patients with retrospective data were selected. And than among the 250 subjects obtained, 91 patients used the cardiovascular roadmap function during single-vessel intervention, and 159 patients did not use the roadmap. When DCR was used, total dose area product (34.57 uGy/m2 : 69.15 uGy/m2), total air kerma dose (688.47 mGy : 1640.4 mGy), fluoroscopy dose (23.87 uGy/m2 : 49.91 uGy/m2) and fluoroscopy time (723.55 s : 366.03 s), total number of images (17 : 26) showed lower values and were statistically significant than those not used. The use of DCR function in single vessel coronary intervention is thought to be radiologically safer as single vessel coronary intervention using dynamic cardiovascular DCR showed lower perspective time and perspective dose than procedures performed without the DCR.
Journal of the Institute of Convergence Signal Processing
/
v.24
no.4
/
pp.178-185
/
2023
Rapid urbanization and advancements in technology have led to a surge in the number of automobiles, resulting in frequent traffic accidents, and consequently, an increase in human casualties and economic losses. Therefore, there is a need for technology that can predict the risk of traffic accidents to prevent them and minimize the damage caused by them. Traffic accidents occur due to various factors including traffic congestion, the traffic environment, and road conditions. These factors give traffic accidents spatiotemporal characteristics. This paper analyzes traffic accident data to understand the main characteristics of traffic accidents and reconstructs the data in a time series format. Additionally, an LSTM-MLP based model that excellently captures spatiotemporal characteristics was developed and utilized for traffic accident prediction. Experiments have proven that the proposed model is more rational and accurate in predicting the risk of traffic accidents compared to existing models. The traffic accident risk prediction model suggested in this paper can be applied to systems capable of real-time monitoring of road conditions and environments, such as navigation systems. It is expected to enhance the safety of road users and minimize the social costs associated with traffic accidents.
The Journal of Sustainable Design and Educational Environment Research
/
v.12
no.3
/
pp.58-67
/
2013
This study is to analyze the satisfaction and the image evaluation of landscape elements in outdoor space by types of the university campus. The results are as follows. 1) Out of outdoor elements at university campus, planting area, resting area, access road, and water feature are recognized as major landscape elements. Among them, planting area and access roads are evaluated low in terms of satisfaction levels, therefore, improvement on these elements are required. 2) In outdoor space image evaluation, university campus has image such as 'simple', 'clear', and 'safe'. By scale of universities, both 'A' university, which is the biggest in terms of size of campus, and 'B' university, which has a medium sized campus, have a positive image. However, 'C' university, which is the smallest in terms of size of campus, has a passive and negative image. 3) 6 factors are extracted through Factor Analysis for image evaluation. All of the universities show positive image in the categories of 'clarity' and 'familiarity', however, 'B' university and 'C' university show negative image in the category of 'scale'. 4) In Correlation Analysis between landscape elements satisfaction level and image evaluation, it is showed that the group of landscape facility becomes a relation factor of overall image evaluation. As a result, the higher satisfaction level goes, the better image evaluation of overall outdoor space at university campus is.
Journal of Institute of Control, Robotics and Systems
/
v.22
no.2
/
pp.110-116
/
2016
Autonomous vehicles must obey the traffic laws in order to drive actual roads. Traffic signs erected at the side of roads explain the road traffic information or regulations. Therefore, traffic sign recognition is necessary for the autonomous vehicles. In this paper, color characteristics are first considered to detect traffic sign candidates. Subsequently, we establish HOG (Histogram of Oriented Gradients) features from the detected candidate and recognize the traffic sign through a SVM (Support Vector Machine). However, owing to various circumstances, such as changes in weather and lighting, it is difficult to recognize the traffic signs robustly using only SVM. In order to solve this problem, we propose a tracking algorithm with RANSAC-based motion estimation. Using two-point motion estimation, inlier feature points within the traffic sign are selected and then the optimal motion is calculated with the inliers through a bundle adjustment. This approach greatly enhances the traffic sign recognition performance.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.9
/
pp.3598-3614
/
2020
With the increase of motor vehicles and tourism demand, some traffic problems gradually appear, such as traffic congestion, safety accidents and insufficient allocation of traffic resources. Facing these challenges, a model of Spatio-Temporal Dilated Convolutional Network (STDGCN) is proposed for assistance of extracting highly nonlinear and complex characteristics to accurately predict the future traffic flow. In particular, we model the traffic as undirected graphs, on which graph convolutions are built to extract spatial feature informations. Furthermore, a dilated convolution is deployed into graph convolution for capturing multi-scale contextual messages. The proposed STDGCN integrates the dilated convolution into the graph convolution, which realizes the extraction of the spatial and temporal characteristics of traffic flow data, as well as features of road occupancy. To observe the performance of the proposed model, we compare with it with four rivals. We also employ four indicators for evaluation. The experimental results show STDGCN's effectiveness. The prediction accuracy is improved by 17% in comparison with the traditional prediction methods on various real-world traffic datasets.
The management of existing concrete bridges has become a major social concern in many developed countries due to the large number of bridges exhibiting signs of significant deterioration. This problem has increased the demand for effective maintenance and renewal planning. In order to implement an appropriate management procedure for a structure, a wide array of corrective strategies must be evaluated with respect to not only the condition state of each defect but also safety, economy and sustainability. This paper describes a new performance evaluation system for existing concrete bridges. The system evaluates performance based on load carrying capability and durability from the results of a visual inspection and specification data, and describes the necessity of maintenance. It categorizes all girders and slabs as either unsafe, severe deterioration, moderate deterioration, mild deterioration, or safe. The technique employs an expert system with an appropriate knowledge base in the evaluation. A characteristic feature of the system is the use of neural networks to evaluate the performance and facilitate refinement of the knowledge base. The neural network proposed in the present study has the capability to prevent an inference process and knowledge base from becoming a black box. It is very important that the system is capable of detailing how the performance is calculated since the road network represents a huge investment. The effectiveness of the neural network and machine learning method is verified by comparing diagnostic results by bridge experts.
At present, continual road constructions to connect from city to city are needed due to the geographical feature of Korea that about $70\%$ of the territory is mountainous area. Thus, the generation of large cut-slope has been inevitably formed. As a means of reinforcement on the cut-slope, in case of destructive disasters such as a snowstorm, pile embedment method is widely adopted. The pile embedment method is to resist possible move of soil by embedding piles from the surface to the immovable ground and then delivering the load from the piles to the immovable ground. In this study this writer analyzes the limitation of empirically used pile construction depth and its spacing through the numerical analysis. As a result, he suggests the most effective pile construction depth and space.
This paper proposes a framework of superpixel-based vehicle detection method using plane normal vector in disparity space. We utilize two common factors for detecting vehicles: Hypothesis Generation (HG) and Hypothesis Verification (HV). At the stage of HG, we set the regions of interest (ROI) by estimating the lane, and track them to reduce computational cost of the overall processes. The image is then divided into compact superpixels, each of which is viewed as a plane composed of the normal vector in disparity space. After that, the representative normal vector is computed at a superpixel-level, which alleviates the well-known problems of conventional color-based and depth-based approaches. Based on the assumption that the central-bottom of the input image is always on the navigable region, the road and obstacle candidates are simultaneously extracted by the plane normal vectors obtained from K-means algorithm. At the stage of HV, the separated obstacle candidates are verified by employing HOG and SVM as for a feature and classifying function, respectively. To achieve this, we trained SVM classifier by HOG features of KITTI training dataset. The experimental results demonstrate that the proposed vehicle detection system outperforms the conventional HOG-based methods qualitatively and quantitatively.
The behavior of walking involves our action of seeing things. It is the intention of this research that the cognitive process of perceiving things along the path can affect the way we sense the length of the journey. The theory generally accepted in this line of thought is the 'feature accumulation theory'. It assumes that if the journey includes many objects or memorable features, then our memory recalls that journey much farther than it really was. This study set up a real-life experiment by asking university students about their mental memory of the two different routes in the campus. One is a longer path that has not much to look at except trees and the other a shorter path yet with many buildings, sign boards and street furnitures. The subjects processed their mental image in the brain based on their experience. They showed a strong tendency that the path with more features were remembered longer while that with less features shorter. More interestingly, it was found that as their experience increases, they become more accurate about the exact length of the questioned paths. The result corroborates the theory that human perception of space is based on the topological understanding of surroundings rather than geometric understanding.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.