• Title/Summary/Keyword: Road construction site

Search Result 270, Processing Time 0.024 seconds

Tensile Adhesive Chracteristics of Waterproofing System for Concrete Bridge Decks (교량 바닥판 조건에 따른 교면방수 시스템의 인장접착 특성)

  • Lee, Byung-Duck;Shim, Jae-Won;Park, Sung-Ki;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.4 no.3 s.13
    • /
    • pp.15-23
    • /
    • 2002
  • The waterproofing system's performance is known to show a determing by complex interaction of material factors, design details, and the quality of construction, and the waterproofing integrity of waterproofing membranes is determined by the bond to the deck and the amount of damage to the waterproofing membrane. In this research, the basic properties of waterproofing membranes on market and the tensile adhesive chracteristics of waterproofing systems of concrete bridge deck have also been investigated in the view of the damages frequently reported from job site. For the tensile adhesive strength of sheet waterproofing membranes, the results after asphalt concrete paving tends to increase more than before those. The results of the liquid waterproofing membranes are upside-down, and the more concrete has strength, the more strength of tensile adhesive increase. The ambient temperature of asphalt concrete when application of the waterproofing membrane has considerable influence on the performance of waterproofing system. As described above, waterproofing system can be influenced by several factors. If they are not considered under construction, the overlooking will cause the damages of pavement and waterproofing system after traffic opening.

  • PDF

Building Integrated Vegetation Systems into the New Sainsbury's Building Based on BIM

  • Lee, Dong-Kyu
    • Journal of KIBIM
    • /
    • v.4 no.2
    • /
    • pp.25-32
    • /
    • 2014
  • Today, there is a growing need of environment-friendly buildings, so-called 'green', facilities, and energy saving buildings to decrease environmental pollutants released into cities by construction activities. Green-Building Information Modeling (Green-BIM) is a purpose-built solution which supports to forecast energy consumption of 3-D model of a building by augmenting its primary 3-D measurements (width, height and depth) with many more dimensions (e.g. time, costs, social impacts and environmental consequences) throughout a series of sequential phases in the lifecycle of a building. The current study was carried out in order to integrate vegetation systems (particularly green roof and green wall systems) and investigate thermal performance of the new Sainsbury's building which will be built on Melton road, Leicester, United Kingdom. Within this scope, a 3-D building model of the news Sainsbury's building was first developed in $Autodesk^{(R)}$ $Revit^{(R)}$ and this model was then simulated in $Autodesk^{(R)}$ $Ecotect^{(R)}$once weather data of the construction site was obtained from $Autodesk^{(R)}$ Green Building $Studio^{(R)}$. This study primarily analyzed data from (1) solar radiation, (2) heat gains and losses, and (3) heating and cooling loads simulation to evaluate thermal performance of the building integrated with vegetation system or conventionally available envelops. The results showed that building integrated vegetation system can potentially reduce internal solar gains on the building rooftops by creating a 'bioshade'. Heat gains and losses through roofs and walls were markedly diminished by offering greater insulation on the building. Annual energy loads for heating and cooling were significantly reduced by vegetation more significantly through the green roof system in comparison to green wall system.

A Study of the Impractical Area and Boundary of an Outer Royal Garden "Hamchunwon" Attached to Gyeonghuigung Palace (경희궁 별원(別苑) 함춘원의 실지(實地) 경역 고찰)

  • Jung, Woo-Jin;Hong, Hyeon-Do;So, Hyun-Su
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.26-42
    • /
    • 2022
  • The purpose of this study is to examine and understand the area and the original outer boundaries of Hamchunwon(含春苑), which was the outer royal garden of Gyeonghuigung Palace, which existed before the site of the Russian legation. The results of the study are as follows. First, examining the 3 types of drawings prepared for securing the Russian legation's site and constructing a new building, it was confirmed that two low peaks, which appear to be the original terrain of Hamchunwon, existed in the north and south directions inside the site. According to the initial plan of the of the legation's site, it appears that the entrance of the legation building is connected to the Saemunan-ro in the northwest. However, according to the report made at the time when the Russian temporary minister Veber purchased the legation's site, it was recorded that the site already had a narrow entrance and a dirt road in place, and hence, it was connected to Saemunan-ro. This fact makes it possible to learn that the line of movement for officials and the original gate were located to the northwest of the site planned as the entrance of the legation building towards Hamchunwon. Second, the site was created by cutting the top of the high hill at the time of the construction of the legation building, and as a result, a two tiered staircase typed terrace was built. The ground on which the main building and the secretary's building, etc., were erected was made by cutting the highest peak and solidifying it flat, and a large quantity of soil was used for grading. In the case of the northern area of the main building, the traces of leveling the terrain by cutting the mountains are apparent, and an observation typed garden with a walking path and pavilion was formed by utilizing the physical environment equipped with an easy view. This may be considered as a use which is consistent with the topographical conditions of creating an outer royal garden to block the civilian views on a high terrain overlooking the palace. Third, Hamchunwon's fences were partially exposed in the photos from the 1880s through the 1890s, which demonstrate the spatial changes made around the US, UK, and the Russian legations. As a result of the photo analysis performed, Hamchunwon occupies the northern area of the Russian legation's site, and it is estimated that the north, west, and east walls of the legation resembled those of Hamchunwon. The area to the south of the Russian legation was originally a place made available for civilian houses, and it was possible to examine the circumstances of purchasing dozens of civilian houses and farmlands according to various materials. Fourth, Hamchunwon, which was formed as the outer royal garden of Gyeongdeokgung Palace of Lord Gwanghaegun, lost its sense of place as an outer royal garden when the entire building of Gyeonghuigung Palace was torn down and used as a construction members during the reconstruction of Gyeongbokgung Palace, and faded away as the site was sold to Russia around 1885. The area where Hamchunwon used to be located transformed into a core space of the Russian legation where the main building and garden were located after the construction of the new building. Hence, Hamchunwon, which was limited to the northern area of the Russian legation, does not carry the temporal and spatial context with Gyeongungung Palace and Seonwonjeon which were constructed after 1897, and it is determined that the view of Seonwonjeon as Baehoorim or Baegyeongrim is not valid.

Development of Extraction Method of Slab Curling Shape of jointed Concrete Pavement Using Profile Data (줄눈 콘크리트포장의 프로파일 데이터를 이용한 슬래브의 컬링형상 추출기법 개발)

  • Chon, Beom-Jun;Lee, Seung-Woo;Mun, Sung-Ho
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.9-18
    • /
    • 2008
  • Curling is caused by the difference in the temperature and humidity by the depth of the slab in Jointed Plain Concrete Pavement. Slab curvature shape and size change due to curling exert a profound influence on the internal stress and roughness of the pavement, affecting structural and functional performance of the pavement. Direct measurement of the slab curvature entails many problems. Many measuring instruments have to be installed at the early-stage of the pavement construction, and the behavior of the slab curvature needs to be measured accurately from the early-stage. Moreover, the cost and technical difficulty are very formidable to measure the slab curvature. This study develops a measurement method for slab curvature in jointed concrete pavement at any given time by applying Power Spectrum Density Analysis and Inverse Fast Fourier Transformation to the profile data, that can be easily obtained at the construction field site. The effectiveness of this developed method is verified by measuring the profile data of the test road of jointed concrete pavement at an inland central expressway by the hour and by examining the result of extracting the slab curvature shape from this profile data. Additionally, the profile data of CRCP(Continuously Reinforced Concrete Pavement) sections on the same expressway were obtained and analyzed at the same time. The validity of the method developed for the slab curvature shape extraction is verified by comparing the result from the analysis of the profile data of CRCP sections with that from the analysis of the prof1Ie data of jointed concrete pavement sections.

  • PDF

A Study on Practicalization of Low Vibration New KINRECKER-II (미진동 발파용 New KINECKER-II 실용화에 관한 연구)

  • Jang, Seung-Ho;Park, Hee-Won;Lim, Jung-Hyuk;Lee, Chang-Yeop;Ahn, Bong-Do;Kang, Dae-Woo;Lee, Ha-Young
    • Explosives and Blasting
    • /
    • v.35 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • Mountain and hill areas occupy by more than 70% in South Korea and Rock drilling should be applied in order to reduce noisy & vibration from massive civil engineering business such as road expansion, high-way construction, subway construction and construction of site renovation such as a newly-built & re-development of apartment, newly-built of high-rising building in downtown area. As Blasting noise & vibration such as vibration, noise, fly rock etc caused by blasting operation from large small scale construction occurs, neighboring residents who demand the compensation file a civil complaint so that the business reach a deadlock. As the excavation method for these areas, There are blasting of micro-vibration, mechanical excavation method(Rock splitter, Breaker etc), similar blasting method(plasma, gel fragmentation etc) to date. In this study, we are trying to find the feature & performance which get improved economic feasibility & construct ability through improving sympathetic detonation of New KINECKER-I used in blasting of micro-vibration & formulation and would provide convenience for use by introducing standard blasting pattern & construction method. Also, checked and confirmed all the blasting with connecting cap has been cleary detonated.

A case Study on Settlement and Bearing Capacity Improvement for Soft Clay Applying the Reinforcement Method using Stabilized Soil (고화처리공법이 적용된 연약점토지반의 침하 및 지지력 개선에 관한 사례연구)

  • Ki, Wan-Seo;Kim, Sun-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3923-3930
    • /
    • 2014
  • In this study, the physical and dynamic characteristics of soil were analyzed by selecting 3 sections as research subjects among road and structure construction sections in the construction site of the Gwangyang ${\bigcirc}{\bigcirc}$ industry area, and conducted consolidation analysis and bearing capacity assessments through Midas-GTS according to the construction conditions of the structures and section conditions of reinforcement using stabilized soil. The effects of improving the settlement and bearing capacity according to the improved effects of the stability and sections of reinforcement using stabilized soil in applying the reinforcement method using stabilized soil were analyzed as a solution for improving the settlement and bearing capacity of soft clay for constructing roads and structures. The improvement effects of the settlement and bearing capacity were outstanding when the reinforcement method using stabilized soil to the soft clay was applied. After applying the reinforcement method using stabilized soil, the holdback effect of the consolidation settlement was excellent by decreasing the volume of the consolidation settlement from a minimum of 53% to a maximum of 82%. When the width of the reinforcement using stabilized soil was twice the width of the constructed structure, it was found that the holdback effect of the consolidation settlement ranged from 1% to 7% through the width of reinforcement using stabilized soil. In addition, when applying reinforcement more than 6m in width and 1m in depth using stabilized soil, it was found that the increase in the allowable bearing capacity was 2.3 to 3.3 times more than that before applying the reinforcement, which suggests that the increase in bearing capacity by applying the reinforcement method using stabilized soil was significant.

The Frost Heaving Characteristics of Subgrade Soils Using Laboratory Freezing System (실내동결시스템을 이용한 노상토의 동상 특성)

  • Shin, Eun-Chul;Ryu, Byung-Hyun;Park, Jeong-Jun
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.71-79
    • /
    • 2010
  • The influence of fines of the frost susceptibility of subgrade soils were established by laboratory freezing system test simulating closely the thermal conditions in the field. During the winter season, the climate is heavily influenced by the cold and dry continental high pressure. Because of siberian air mass, the temperature of January is $-6{\sim}-7^{\circ}C$ on average. This chilly weather generate the frost heaving by freezing the moisture of soil and damage potential of the road structure. In the freezing soil, the ice lenses increase the freeze portion of soil by absorbing the ground water with capillary action. However, the capillary characteristics differ from the sort of soil on the state of freezing condition. In the current design codes for anti-freezing layer, the thickness of anti freezing layer is calculated by freezing depth against the temperature condition. Therefore, they have a tendency of over-design and uniform thickness without the considerations of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential for studying the appropriateness and bearing capacity besides the seasonal and mechanical properties of pavement materials to take a appropriate and reasonable design of the road structure. In this Paper, the evaluation of frost susceptibility was conducted by means of the mechanical property test and laboratory freezing system apparatus. The temperature, heaving amount, heaving pressure and unfrozen water contents of soil samples, the subgrade soils of highway construction site, were measured to determine the frost susceptibility.

Development of tree box filter LID system for treating road runoff (LID 시설로서 도로에 적용 가능한 수목여과시설 개발)

  • Choi, Jiyeon;Son, Younggyu;Lee, Soyoung;Lee, Yuhwa;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.407-412
    • /
    • 2013
  • The aim of this study was to develop a tree box filter system, an example of Low Impact Development technology, for treating stormwater runoff from road. Monitoring of storm events was performed between June 2011 and November 2012 to evaluate the system performance during wet day. Based on the results, all runoff volume generated by rainfall less than 2 mm was stored in the system. The minimum volume reduction of 20% was observed in the system for rainfall greater than 20 mm. The greatest removal efficiency was exhibited by the system for total heavy metals ranging from 70 to 73% while satisfactory removal efficiency was exhibited by the system for particulate matters, organic matters and nutrients ranging from 60 to 68%. The system showed greater pollutant removal efficiency of 67 to 83% for rainfall less than 10 mm compared to rainfall greater than 10 mm which has 39 to 75% pollutant removal efficiency. The system exhibited less pollutant reduction for rainfall greater than 10 mm due to the decreased retention capacity of the system for increased rainfall. Overall, the system has proved to be an option for stormwater management that can be recommended for on-site application. Similar system may be designed based on several factors such as rainfall depth, facility size and pollutant removal efficiency.

Development of Three-Dimensional Finite Element Model for Structural Analysis of Airport Concrete Pavements (공항 콘크리트 포장 구조해석을 위한 3차원 유한요소 모형 개발)

  • Park, Hae Won;Shim, Cha Sang;Lim, Jin Seon;Joe, Nam Hyun;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.67-74
    • /
    • 2017
  • PURPOSES : In this study, a three-dimensional nonlinear finite element analysis (FEA) model for airport concrete pavement was developed using the commercial program ABAQUS. Users can select an analysis method and set the range of input parameters to reflect actual conditions such as environmental loading. METHODS : The geometrical shape of the FEA model was chosen by considering the concrete pavement located in the third-stage construction site of Incheon International Airport. Incompatible eight-node elements were used for the FEA model. Laboratory test results for the concrete specimens fabricated at the construction site were used as material properties of the concrete slab. The material properties of the cement-treated base suggested by the Federal Aviation Administration(FAA) manual were used as those of the lean concrete subbase. In addition, preceding studies and pavement evaluation reports of Incheon International Airport were referred for the material properties of asphalt base and subgrade. The kinetic friction coefficient between the concrete slab and asphalt base acquired from a preceding study was used for the friction coefficient between the layers. A nonlinear temperature gradient according to slab depth was used as an input parameter of environmental loading, and a quasistatic method was used to analyze traffic loading. The average load transfer efficiency obtained from an Heavy falling Weight Deflectomete(HWD) test was converted to a spring constant between adjacent slabs to be used as an input parameter. The reliability of the FEA model developed in this study was verified by comparing its analysis results to those of the FEAFAA model. RESULTS : A series of analyses were performed for environmental loading, traffic loading, and combined loading by using both the model developed in this study and the FEAFAA model under the same conditions. The stresses of the concrete slab obtained by both analysis models were almost the same. An HWD test was simulated and analyzed using the FEA model developed in this study. As a result, the actual deflections at the center, mid-edge, and corner of the slab caused by the HWD loading were similar to those obtained by the analysis. CONCLUSIONS : The FEA model developed in this study was judged to be utilized sufficiently in the prediction of behavior of airport concrete pavement.

Site Selection of Wildlife Passage for Leopard Cat in Urban Area using Space Syntax (공간구문론을 이용한 도시 내 삵 이동통로 적지선정)

  • Park, Jong-Jun;Woo, Dong-Geol;Oh, Dae-Hyun;Park, Chong-Hwa
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.92-99
    • /
    • 2012
  • Many wildlife habitats have been destroyed and fragmented during the rapid industrialization and urbanization process in Korea. It is essential to connect these fragmented habitats to reduce road-kill of many types of endangered urban wildlife. The site selection for wildlife passages must take into account the behavior of the wildlife species for safe crossing utilizing many artificial barriers in urban areas. This study attempted to identify potential wildlife passage sites for the endangered and protected leopard cats of Gangseo Ecological Park in Seoul, Korea. A space syntax analysis, an analytical technique to objectively evaluate the spatial configurations related to passage selection, found that the integration value represents the accessibility and connectivity of spaces. In this paper, this means that the bigger the integration value, the more frequently the leopard cat passes through. The leopard cats were captured and radio-tracked for 72 hours once a month from March to June of 2009. The ArcGIS and Animal Movement of Hawth Tools were used to analyze the home range and movement paths, and Axwoman 4.0 was used to analyze space syntax. The daily average movement distance was $2.099{\pm}1.08km$. During the survey period, the leopard cats crossed over an urban expressway more than 20 times, running the risk of road-kill. The range of global integration values was 0.458~1.834, while that of the local integration was 0.210~6.061. Five sites that met across the leopard cats' movement routes and roads were selected to measure the local and global integrate values. Among these sites, the higher the integration value, the higher the road-kill possibility. Thus, two of five sites with high global and local integration values were suggested as potential wildlife passage sites for the leopard cats. Now, three tunnel passages are under construction at the suggested sites for which local integration value was highest (LI=4.369). Further studies are scheduled to verify these potential sites as suitable wildlife passages.