• Title/Summary/Keyword: Road Tunnel

Search Result 585, Processing Time 0.022 seconds

Practical 2-Arch Road Tunnel Design in Mountainous area (산악지형에서 효율적인 2-Arch 터널의 설계사례)

  • Jeong, Kyeong-Han;Lee, Joo-Gong;Han, Sung-Su;Hwang, Yong-Sub;Kim, Ji-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.601-612
    • /
    • 2005
  • In mountainous area, Two parallel tunnels have been usually recognized as a road tunnel which has benefits in aspects of cost and stability. However, Design and construction of 2-Arch road tunnel are growing recently due to environmental destruction, compensation of land and difficulty of route separation. As studies are mainly undergoing on only guaranteeing stability and developing a waterproofing-drainage system to avoid water leakage through comprehension for characteristics of 2-arch tunnel behaviors, there is a tendency to evaluate quantity of support by empirical method with a tunnel which has a complicated cross-section and lack of construction ability. In this study, therefore, we made a plan of tunnel cross-section which had shown good construction ability and developed the waterproofing-drainage system which is able to solve the water leakage problem fundamentally by analyzing precedented 2-arch tunnels and investigating their sites in and out of nation. We also determined fixed quantity of support by a large-scale model test and numerical analysis. We want to contribute to 2-arch tunnel design hereafter introducing design procedure and method applied here.

  • PDF

A study on the enlargement of 2-lane road tunnel under construction (시공중인 2차로 도로터널의 확장 방안에 대한 연구)

  • Choi, Hae-Jun;Kim, Dae-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.1
    • /
    • pp.33-50
    • /
    • 2011
  • Recently interest in enlargement of existing tunnel located in downtown or mountain area have been considerably increased along with requirements and discussion on the road-widening. Therefore, it is necessary to study the construction method and stability of tunnel to enlarge the existing tunnel in design. In this study, the design concept on the alignment, excavation method, reinforcement to enlarge the existing tunnel is described on the basis of the enlargement of 2-lane road tunnel under construction. This paper suggests a proper design method for the enlargement of an existing tunnel in useful practice.

Numerical Analysis on the Estimation of Shock Loss for the Ventilation of Network-type Double-deck Road Tunnel (네트워크형 복층 도로터널 환기에서의 충격 손실 평가를 위한 수치해석적 연구)

  • Park, Sang Hoon;Roh, Jang Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.132-145
    • /
    • 2017
  • Shock loss was not applied for the tunnel ventilation of road tunnel in the past. However, pressure losses due to the shock loss can be significant in network double-deck road tunnel in which combining and separating road structures exist. For the optimum ventilation design of network double-deck road tunnel, this study conducted 3D CFD numerical analysis for the shock loss at the combining and separating flows. The CFD model was made with the real-scale model that was the standard section of double-deck road tunnel. The shock loss coefficient of various combining and separating angles and road width was obtained and compared to the existing design values. As a result of the comparison, the shock loss coefficient of the $30^{\circ}$ separating flow model was higher and that of the two-lane combining flow model was lower. Since the combining and separating angles and road width can be important for the design of shock loss estimation, it is considered that this study can provide the accurate design factors for the calculation of ventilation system capacity. In addition, this study conducted 3D CFD analysis in order to calculate the shock loss coefficient of both combining and separating flows at flared intersection, and the result was compared with the design values of ASHRAE. The model that was not widened at the intersection showed three times higher at the most, and the other model that was widened at the intersection resulted two times higher shock loss coefficients.

Fire Suppression Experiment for Road Tunnel Low Pressure Water Spray Systems (도로터널 저압 물분무설비 화재진압 실험)

  • Choi, Byung-Il;Han, Yong-Shik;Kim, Myung-Bae;So, Soo-Hyun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.218-221
    • /
    • 2008
  • The real scale fire suppression test inside a road tunnel were carried out for water spray systems. The dimension of the tunnel is 7.5m in height and 11.6m in width. 3 different water spray nozzle systems with low operating pressure less than 3.5 bar were used in the experiment. Two types of fires were tested. One is a $1.4m^2$ heptane pool fire and the other is a 2000CC passenger car fire. From the experiment, the spray densities of tested systems were about $6.0\;l/min/m^2$ which is currunt domestic guideline. Although all the systems cannot extinguish the tested fires, it was found that they can reduce the tunnel temperature and have a capability to control and suppress the tested fire.

  • PDF

The Analysis of Ventilation of Road Tunnel in Fire (도로터널 화재시의 환기분석)

  • Kom, Sung-Joon;Ryu, Jin-Woong
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.9-13
    • /
    • 2003
  • Numerical experiments are done by a commercial code, PHOENICS to evaluate the backlayer phenomenon of smoke in case of the road tunnel fire. The independent and dependent variables are ventilation air velocity and the length of backlayer of smoke respectively. Hybrid scheme and ${\kappa}-{\varepsilon}$ turbulence model are adopted in the simulation process and mass residual is used as a convergence criterion. The experimental results say that the length of backlayer is reduced with the increase of ventilating air velocity and that there is a critical air velocity which prevents from the onset of backlayering phenomena. One finds that there is a fresh air region near the bottom of tunnel which could make the passenger escape safely from the polluted region by smoke. These phenomena come from the vertical stratification of the smoke air mixture in the tunnel.

  • PDF

Stability evaluation of a double-deck tunnel with diverging section

  • La, You-Sung;Kim, Bumjoo
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.123-132
    • /
    • 2020
  • Due to the various restrictions and problems related to the construction of new roads in urban areas, underground road construction has been receiving a great deal of attention in the field of tunnel engineering. In this study, a double-deck road tunnel with a diverging section was analyzed for the evaluation of its stability. Both numerical analysis and scale model tests were performed, the results were used to develop a stability evaluation method for double-deck tunnels with diverging sections constructed in rocks by NATM. From regression analyses conducted on the results of the numerical analysis, an equation and a chart were derived, these tools allow us to obtain the strength/stress ratio (SSR) for double-deck road tunnels with a diverging tunnel in various diverging conditions quickly and accurately. These tools have great potential to help engineers evaluate the stability of double-deck tunnels in the preliminary design stage.

A Study on Current Extent of Damage of Road Tunnel Lining in Cold Regions (Gangwon-do) (한랭지역(강원권)에서의 도로터널 라이닝부 피해 현황 연구)

  • Jin, Hyunwoo;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.49-58
    • /
    • 2017
  • Due to low annual average temperature, road tunnel lining in domestic cold region (Gangwon province) experiences durability problems. The financial and human damage due to cracks, breakout, exfoliation and water leakage increases every year. However, domestic research on effect of temperature on road tunnel lining damage is insufficient. Thus, this research has investigated 70 tunnels located in cold region (Gangwon-do) to analyze damage status. Furthermore, by contrasting damage on tunnels in relatively warm Gangneung area with those in relatively cold Hongcheon area, the effect of temperature on road tunnel lining damage was analyzed.

Study on Discharge Electrode Design applied for Road Tunnel (터널용 전기집진시스템 개발을 위한 방전극 설계)

  • Kim, Jong-Ryul;Weon, Jong-Oung;Jang, Chun-Man
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1238-1243
    • /
    • 2009
  • As Social Overhead Capital(SOC) has been expanded, the highway road construction has been accelerated and city road system has been more complicated. So, long road tunnels have been increased and traffic flow rate also has been raised. Accordingly, the exhausting gas of vehicle cars seriously deteriorates the tunnel inside air quality and driving view. In order to improve tunnel inside air quality, it is needed to introduce a compulsory ventilation system as well as natural ventilation mechanism. The former, that is, a special compulsory ventilation facility is very useful and helpful to prevent a tunnel of being contaminated by traffic in most case. In the case of obtaining clearer and longer driving view, the ventilation systems have to be considered in order to remove floating contaminants or exhaust gas from engines. In this paper, discharge electrode design technology will be discussed.

  • PDF

Influence of Road Tunnel on Groundwater Change Determined Using Forensic Hydrogeological Technique (수리지질학적 과학수사 기법에 의한 도로 터널이 지하수 변화에 미치는 영향)

  • Sul-Min Yun;Se-Yeong Hamm
    • Journal of Environmental Science International
    • /
    • v.33 no.4
    • /
    • pp.269-277
    • /
    • 2024
  • Scientific forensic techniques are used to verify environmental impact of groundwater pollution, surface water pollution, air pollution, noise, and vibration according to residents' complaints in connection with construction and civil engineering works. In this study, we investigated the contamination of groundwater and the lowering of the groundwater level in an area surrounding a tunnel excavation site for the Andong-Yeongdeok national road, using a forensic hydrogeological technique. We reviewed the groundwater level and water quality of well GW1 in the area surrounding the tunnel excavation site as well as tunnel construction information and then we analyzed the correlations among the obtained data. Before tunnel excavation, the water level of well GW1 was lower than the tunnel elevation. Considering the relationship between the precipitation, tunnel discharge, tunnel depth, and groundwater level of well GW1, the groundwater flowed from the tunnel to well GW1. Moreover, the tunnel discharge and groundwater levels were not related to each other. The pH of well GW1 was 8.4 before tunnel excavation. During excavation, the pH declined to 8.1-8.2 at the beginning, and increased to 8.8 at the end of the excavation. The fluorine concentration in well GW1 was 2.49 mg/L, 1.91-3.22 mg/L, and 1.7-2.67 mg/L, respectively, before, during, and after the excavation. The sulfate ion concentration was very high, over 2,000 mg/L, before and during the excavation; after the excavation, it was between 200 and 323 mg/L. Turbidity was 1.47, 10.5, and 4.51 NTU before, during, and after tunnel excavation, respectively. Therefore, the excavation of this tunnel is not related to the groundwater quality of well GW1.

A Case Study for the 1st Double-level Tunnel for Light vehicle in Urban Area in Korea (국내 최초 소형차 전용 도심지 대심도 복층터널 설계 사례)

  • Kim, Gyoung-Hun;Choi, Jun-Dong;Jun, Duk-Chan;Shin, Il-Jae;Sim, Dong-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1302-1313
    • /
    • 2010
  • The west express way is notorious for extremely heavy traffic area in the west of Seoul, South Korea. Hence, the city government recently initiated a new underground BTO (Build-Transfer-Operate) road project to solve traffic congestion and a high construction cost. The proposed underground express road being designed is the first double-level tunnel ever designed in South Korea and using Conventional tunnelling method (NATM). A total length of tunnel for light vehicles is 10.91km long including both open cut structures and concrete lining with middle-deck in bored tunnel. There are also 4 ventilation shafts for ventilation and evacuation on emergency. Many design issues had been aroused during the preliminary design phase and detail design phase is currently going on. This paper discusses design focuses including excavation methods, ground water issues, a deck slab installation, and a construction cost etc. for the double level road tunnel design of urban area.

  • PDF