• 제목/요약/키워드: Road Tunnel

검색결과 585건 처리시간 0.023초

A modified shell-joint model for segmental tunnel dislocations under differential settlement

  • Jianguo Liu;Xiaohui Zhang;Yuyin Jin;Wenyuan Wang
    • Geomechanics and Engineering
    • /
    • 제35권4호
    • /
    • pp.411-424
    • /
    • 2023
  • Reasonable estimates of tunnel lining dislocations in the operation stage, especially under longitudinal differential settlement, are important for the design of waterproof gaskets. In this paper, a modified shell-joint model is proposed to calculate shield tunnel dislocations under longitudinal differential settlement, with the ability to consider the nonlinear shear stiffness of the joint. In the case of shell elements in the model, an elastoplastic damage constitutive model was adopted to describe the nonlinear stress-strain relationship of concrete. After verifying its applicability and correctness against a full-scale tunnel test and a joint shear test, the proposed model was used to analyze the dislocation behaviors of a shield tunnel in Shanghai Metro Line 2 under longitudinal differential settlement. Based on the results, when the tunnel structure is solely subjected to water-earth load, circumferential and longitudinal joint dislocations are all less than 0.1 mm. When the tunnel suffers longitudinal differential settlement and the curvature radius of the differential settlement is less than 300 m, although maximum longitudinal joint dislocation is still less than 0.1 mm, the maximum circumferential joint dislocation is approximately 10.3 mm, which leads to leakage and damage of the tunnel structure. However, with concavo-convex tenons applied to circumferential joints, the maximum dislocation value reduces to 4.5 mm.

도로터널 환기시스템 설계 프로그램 개발 (Study on Optimization Technique for Design of the Road Tunnel Ventilation System)

  • 유지오;이동호;신현주
    • 한국안전학회지
    • /
    • 제14권4호
    • /
    • pp.60-70
    • /
    • 1999
  • In this study, the computer code for the optimal design of road tunnel ventilation system based on one-dimensional analysis of the air flow was developed. The control volume method was used to calculate the air velocities and the concentration distribution of pollutants(CO, NOx, Particulate) for various tunnel ventilation system. This code was validated by comparing the calculation results to the practical design data for the road tunnel ventilation system. The calculation results were in accord with the practical design data.

  • PDF

도로터널의 화염전파해석에 관한 연구 (Study on the Analysis of Fire Propagation in Road Tunnels)

  • 권용일;유지오;이동호;권순석
    • 설비공학논문집
    • /
    • 제12권6호
    • /
    • pp.616-622
    • /
    • 2000
  • This paper concerns the application of smoke and fire spread to road tunnel fire problems. When a road tunnel is on fire. a fire protection system of road tunnel have to offer an adequate escape space to human. Therefore, this study carried out a simulation for predicting a spreading path of smoke and fire. The evolution of the flow field is simulated with the low Reynolds number k-$\varepsilon$ turbulent model and SIMPLE algorithm based on the finite volume method.

  • PDF

터널 일산화탄소 농도 제어를 위한 직렬 제어 알고리즘 (A Cascade Control Algorithm for the CO Level Control of a Long Road Tunnel)

  • 한도영;윤진원
    • 설비공학논문집
    • /
    • 제17권2호
    • /
    • pp.147-155
    • /
    • 2005
  • For a long road tunnel, a tunnel ventilation system may be used in order to reduce the pollution level below the required level. To control the tunnel pollution level, a closed loop control algorithm may be used. The cascade control algorithm, which composed of a jet fan control algorithm and an air velocity setpoint algorithm, was developed to regulate the CO level in a tunnel. The verification of control algorithms was carried out by dynamic models developed from real tunnel data sets. The simulation results showed that control algorithms developed for this study were effective to control the tunnel ventilation system.

제트팬 운전에 의해 형성되는 터널내 유동에 대한 수치적 해석 (NUMERICAL ANALYSIS OF TUNNEL FLOW INDUCED BY JET FAN)

  • 김정엽
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.10-13
    • /
    • 2010
  • The flow field in road tunnel is influenced by some facts such as piston effect of vehicle's move, operation of ventilation facilities, natural wind and buoyancy effect of fire plume. Among those, jet fan is one of main ventilation facilities especially in longitudinal ventilation system of tunnel. In this study to analyze tunnel flow induced by operation of jet fan, numerical simulation has been carried out. The velocity distributions and streamlines in tunnel are examined to consider the three-dimensional characteristics of tunnel flow caused by jet fan.

  • PDF

Computational study of road tunnel exposure to severe wind conditions

  • Muhic, Simon;Mazej, Mitja
    • Wind and Structures
    • /
    • 제19권2호
    • /
    • pp.185-197
    • /
    • 2014
  • Ventilation and fire safety design in road tunnels are one of the most complex issues that need to be carefully considered and analysed in the designing stage of any potential upgrade of ventilation and other fire safety systems in tunnels. Placement road tunnels space has an important influence on fire safety, especially when considering the effect of adverse wind conditions that significantly influence ventilation characteristics. The appropriate analysis of fire and smoke control is almost impossible without the use of modern simulation tools (e.g., CFD) due to a large number of influential parameters and consequently extensive data. The impact of the strong wind is briefly presented in this paper in the case of a longitudinally ventilated road tunnel Kastelec, which is exposed to various severe wind conditions that significantly influence its fire safety. The possibility of using CFD simulations in the analysis of the tunnel placement in space terms negative effect of wind influence on the tunnel ventilation is clearly indicated.

도로터널용 전기집진시스템 개발 (Development of Road Tunnel Ventilation System with Electrostatic Precipitator)

  • 김종률;원종웅
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.80-83
    • /
    • 2008
  • As SOC (Social Overhead Capital) has been expanded, the highway road construction has been accelerated and city road system has been more complicated. So, long road tunnels have been increased and traffic flow rate also has been raised. Accordingly, the exhausting gas of vehicle cars seriously deteriorates the tunnel inside air quality and driving view. In order to improve tunnel inside air quality, we may need to introduce a compulsory ventilation system as well as natural ventilation mechanism. The natural ventilation mechanism is enough for short tunnels, meanwhile longer tunnels require a specific compulsory ventilation facility. Many foreign countries already have been devoting on development of effective tunnel ventilation system and especially, some European nations and Japan have already applied their developed tunnel ventilation system for longer road tunnels. More recently, as the quality of life improved, our concerns about safety of driving and better driving environment have been increased. In order to obtain clearer and longer driving view, we are more interested in EP tunnel ventilation system in order to remove floating contaminants and automobile exhaust gas. Evan though it's been a long time since many European countries and Japan applied more economical and environment-friendly tunnel ventilation system with their self-developed Electrostatic Precipitator, we are still dependant on imported system from foreign nations. Therefore, we need to develop our unique technical know-how for optimum design tools through validity investigation and continuous possibility examination, eventually in order to localize the tunnel ventilation system technology. In this project, we will manufacture test-run products to examine the performance of system in order to develop main parts of tunnel ventilation system such as electrostatic precipitator, high voltage power generator, water treatment system, etc.

  • PDF

환기시스템 적용 도로터널의 국소환기 특성 시뮬레이션 및 해석 (Simulation and Analysis of Local Ventilation characteristic of Road Tunnel with Ventilation System)

  • 박기림;오명도;이재헌
    • 설비공학논문집
    • /
    • 제13권5호
    • /
    • pp.321-332
    • /
    • 2001
  • In this study, a design program for ventilation requirements of a longitudinal raod tunnel were developed and investigated. The control volume method was applied to calculate the local air velocity and the local concentration distribution of pollutants, CO, $NO_x$, soot along the tunnel for various tunnel ventilation system. This program was validated by comparing with the practical design data for the road tunnel ventilation system. The calculation results were in good agreement with the practical design data.

  • PDF

도로터널 위험도 평가프로그램 개발에 관한 연구(I) (The study of development of quantitative risk assesment program for the road tunnel)

  • 유지오;신현준;이동호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.460-467
    • /
    • 2006
  • Some large accidents in tunnels in recent years, such as Mont Blanc, Gotthard and Tauern tunnels, have lead to an increasing attention for tunnel safety and necessity of tool for quantitative risk assesment of road tunnel. And the purpose of this study is to develop the quantitative risk assesment tool for the application of road tunnel. The objectives of this paper are as follows : (1) analyze of traffic accident rates in tunnel, (2) make out scenario for fire accidents, (3) develop the evacuation model and FED calculation model, (4) Present the results from quantitative risk assesment for the model tunnel according with the fire heat release rates and distances of cross passage.

  • PDF

네트워크형 지하 도로터널 분기부에서의 환기효율 향상방안에 대한 실험적 연구 (Experimental study of improvement of ventilation efficiency at intersection in network-form underground road tunnel)

  • 이호석;홍기혁;최창림;강명구;임재범;문홍표
    • 한국터널지하공간학회 논문집
    • /
    • 제14권2호
    • /
    • pp.107-116
    • /
    • 2012
  • 네트워크형 도로터널 내 분기부 구조물과 제트팬에 의한 분기 환기효율 분석하고자 실제 도로터널을 1/45로 축소하여 실험을 수행하였다. 차량이 주행할 때 발생하는 교통관성력을 적용하기 위해 블로워 팬를 사용하여 축소모형 터널내 기류를 형성하였고, 터널의 국부적인 위치에서 속도를 측정하여 분기 효율을 연구하였다. 구조물의 특징으로 발생되는 환기 저감을 개선하기 위해 제트팬을 설치하여 터널 내 환기 효율을 최적화하였다.