• Title/Summary/Keyword: Road Severity

Search Result 118, Processing Time 0.128 seconds

Analysis of Traffic Crash Severity on Freeway Using Hierarchical Binomial Logistic Model (계층 이항 로지스틱모형에 의한 고속도로 교통사고 심각도 분석)

  • Mun, Sung-Ra;Lee, Young-Ihn
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.199-209
    • /
    • 2011
  • In the study of traffic safety, the analysis on factors affecting crash severity and the understanding about their relationship is important to be planning and execute to improve safety of road and traffic facilities. The purpose of this study is to develop a hierarchical binomial logistic model to identify the significant factors affecting fatal injuries and vehicle damages of traffic crashes on freeway. Two models on death and total vehicle damage are developed. The hierarchical structure of response variable is composed of two level, crash-occupant and crash-vehicle. As a result, we have gotten the crash-level random effect from these hierarchical structure as well as the fixed effect of covariates, namely odds ratio. The crash on the main line and in-out section have greater damage than other facilities. Injuries and vehicle damages are severe in case of traffic violations, centerline invasion and speeding. Also, collision crash and fire occurrence is more severe damaged than other crash types. The surrounding environment of surface conditions by climate and visibility conditions by day and night is a significant factor on crash occurrence. On the orher hand, the geometric condition of road isn't.

The Activation Plan of Variable Speed Control of Considering Urban Freeway Continuos Traffic Characteristics (In Busan Metropolitan City) (도시고속도로 연속류의 교통특성을 고려한 가변속도제어 활성화 방안 - 부산광역시를 중심으로 -)

  • Jeong, Yong-Hwa;Choi, Yang-Won;Lim, Chang-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.627-635
    • /
    • 2014
  • Currently the highest speed limit on the road traffic congestion or because you can not cope with climate change to cause a traffic accident may be a factor. According to the Road Traffic Act as well as 20% to 50% in case of inclement weather, but the driver must slow speed left to the judgment of the difficulties, and to slow the vehicle and the relative velocity between the vehicle does not run longer be a big influence on the environment and safety. Thus, variable speed control for drivers on the road, specify the appropriate maximum speed limit in bad weather It keeps motorists slowed the run rate to prevent accidents or reduce the severity of accident damage is expected to be possible. The purpose of this study is the frequent traffic accidents Continuous Busan (City Freeway) around the variable speed control in the appropriate sections so that it can be done by analyzing the characteristics of traffic accidents were the severity of the accident. Highway and urban environment, the geometry of the structure because it has a lot of Curved planar point compared to wet and dry road surfaces by simulated rain wet had bom the more the speed the greater the risk of an accident was the result. Based on these results, the primary section, first urban highway tunnel, near the lamp, near Toll Plaza, near binary Outlet after considering various factors such as speed reduction is needed in the first period by conducting awareness and recognize the need for the participation of the driver and the future city installation and operation of highways in all sectors is expected to be expanded.

Risk analysis of road cave-in of storm sewer lateral using zoom camera (줌카메라를 활용한 빗물받이 연결관의 도로함몰 리스크 분석)

  • Han, Sangjong;Hwang, Hwankook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.681-690
    • /
    • 2014
  • It is known that sewer problems are the major causes of road cave-in. The objective of this study is to analyze the risk of road cave-in due to storm sewer laterals. We investigated 174 storm sewer laterals using a zoom camera at O-dong area in Seoul. The causes of road cave-in were classified into five cases: breakage of rigid pipe, deformation of flexible pipe, out of pipeline alignment, changing pipe material or changing pipe diameter, and a poor linkage between lateral and sewer. In addition, all defects were sorted into five grades based on the severity rating at storm sewer laterals. In this study, the most fragile pipe materials were found to be concrete pipe and polyethylene pipe, which recorded 2.3 and 1.69 defect rates. With regard to the causes of road cave-in, deformation of flexible pipe has a large influence on road cave-in at present. On a long-term basis, the two causes, out of pipeline alignment and a poor linkage between lateral and sewer, could have more influence on road cave-in.

Condition assessment model for residential road networks

  • Salman, Alaa;Sodangi, Mahmoud;Omar, Ahmed;Alrifai, Moath
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.361-378
    • /
    • 2021
  • While the pavement rating system is being utilized for periodic road condition assessment in the Eastern Region municipality of Saudi Arabia, the condition assessment is costly, time-consuming, and not comprehensive as only few parts of the road are randomly selected for the assessment. Thus, this study is aimed at developing a condition assessment model for a specific sample of a residential road network in Dammam City based on an individual road and a road network. The model was developed using the Analytical Hierarchy Process (AHP) according to the defect types and their levels of severity. The defects were arranged according to four categories: structure, construction, environmental, and miscellaneous, which was adopted from sewer condition coding systems. The developed model was validated by municipality experts and was adjudged to be acceptable and more economical compared to results from the Eastern region municipality (Saudi Arabia) model. The outcome of this paper can assist with the allocation of the government's budget for maintenance and capital programs across all Saudi municipalities through maintaining road infrastructure assets at the required level of services.

Prediction Models for the Severity of Traffic Accidents on Expressway On- and Off-Ramps (유입·유출특성을 고려한 고속도로 연결로의 교통사고 심각도 예측모형)

  • Yun, Il-Soo;Park, Sung-Ho;Yoon, Jung-Eun;Choi, Jin-Hyung;Han, Eum
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.101-111
    • /
    • 2012
  • PURPOSES: Because expressway ramps are very complex segments where diverse roadway design elements dynamically change within relatively short length, drivers on ramps are required to drive their cars carefully for safety. Especially, ramps on expressways are designed to guarantee driving at high speed so that the risk and severity of traffic accidents on expressway ramps may be higher and more deadly than other facilities on expressways. Safe deceleration maneuvers are required on off-ramps, whereas safe acceleration maneuvers are necessary on onramps. This difference in required maneuvers may contribute to dissimilar patterns and severity of traffic accidents by ramp types. Therefore, this study was aimed at developing prediction models of the severity of traffic accidents on expressway on- and off-ramps separately in order to consider dissimilar patterns and severity of traffic accidents according to types of ramps. METHODS: Four-year-long traffic accident data between 2007 and 2010 were utilized to distinguish contributing design elements in conjunction with AADT and ramp length. The prediction models were built using the negative binomial regression model consisting of the severity of traffic accident as a dependent variable and contributing design elements as in independent variables. RESULTS: The developed regression models were evaluated using the traffic accident data of the ramps which was not used in building the models by comparing actual and estimated severity of traffic accidents. Conclusively, the average prediction error rates of on-ramps and offramps were 30.5% and 30.8% respectively. CONCLUSIONS: The prediction models for the severity of traffic accidents on expressway on- and off-ramps will be useful in enhancing the safety on expressway ramps as well as developing design guidelines for expressway ramps.

Studying the Comparative Analysis of Highway Traffic Accident Severity Using the Random Forest Method. (Random Forest를 활용한 고속도로 교통사고 심각도 비교분석에 관한 연구)

  • Sun-min Lee;Byoung-Jo Yoon;WutYeeLwin
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.156-168
    • /
    • 2024
  • Purpose: The trend of highway traffic accidents shows a repeating pattern of increase and decrease, with the fatality rate being highest on highways among all road types. Therefore, there is a need to establish improvement measures that reflect the situation within the country. Method: We conducted accident severity analysis using Random Forest on data from accidents occurring on 10 specific routes with high accident rates among national highways from 2019 to 2021. Factors influencing accident severity were identified. Result: The analysis, conducted using the SHAP package to determine the top 10 variable importance, revealed that among highway traffic accidents, the variables with a significant impact on accident severity are the age of the perpetrator being between 20 and less than 39 years, the time period being daytime (06:00-18:00), occurrence on weekends (Sat-Sun), seasons being summer and winter, violation of traffic regulations (failure to comply with safe driving), road type being a tunnel, geometric structure having a high number of lanes and a high speed limit. We identified a total of 10 independent variables that showed a positive correlation with highway traffic accident severity. Conclusion: As accidents on highways occur due to the complex interaction of various factors, predicting accidents poses significant challenges. However, utilizing the results obtained from this study, there is a need for in-depth analysis of the factors influencing the severity of highway traffic accidents. Efforts should be made to establish efficient and rational response measures based on the findings of this research.

Driving Conditions and Occupational Accident Management in Large Truck Collisions

  • Jeong, Byung Yong;Lee, Sangbok;Park, Myoung Hwan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.135-142
    • /
    • 2016
  • Objective: Objective of this study is to provide characteristics of injury frequency and severity by driving condition in large truck-related traffic collisions. Background: Traffic accidents involving large trucks draw a lot of attention in accident prevention and management policies since they bring about severe human and financial damages. Method: In order to identify the major risk factors of accidents by driving condition, 255 recognized traffic accidents by large truck drivers were analyzed in terms of time of the day, road type, and shape of the road. Results: The driving conditions in the results are represented by the following form of combination, "Road Type (Non-expressway or Express) - Shape of Roads (Straight, Curved, Downhill, or Intersection) - Time of Accidents (Day or Night)". In the analysis of injury frequency, Non-expressway-Straight-Day condition was the most frequent one. Meanwhile, Expressway-Curved-Day, Non-expressway-Curved-Night and Non-expressway-Intersection-Night were evaluated as high level in view of injury severity. Also, Expressway-Straight-Night is the driving condition that is the highest in risk among the conditions that have to be managed as grade "High". Non-expressway-Straight-Night, Non-expressway-Downhill-Day, and Non-expressway-Curved-Day are also categorized as grade "High". Conclusion and Application: Safety managers in the fields require basic information on accident prevention that can be easily understood. The research findings will serve as a practical guideline for establishing preventive measures for traffic accidents.

A Study of Opposing Left-Turn Conflict Severity at Signalized Intersections (신호교차로 대향좌회전 상충심각도 구분에 관한 연구)

  • Kim, Eung-Cheol;Park, Jee-Hyung;Oh, Ju-Taek;Rho, Jeong-Hyun
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.83-92
    • /
    • 2007
  • In 2004, the number of traffic crashes and deaths in Korea are 220,755 and 6,563, respectively. Korea Road Traffic Safety Authority reported that the number of traffic accidents occupies over 25% out of total accidents, and found that traffic crash probability is extremely high at intersections since intersections have various traffic conflict points. A Safety study using Traffic Conflict Technique is much more useful than a study using reported traffic accident data. Existing traffic conflict research hardly considered conflict severity occurring at intersections. So, the study developed new criteria considering conflict severity. Analytic methods precisely detecting crashing points using field surveying data, and applied an application of our new criteria. Opposing left-turn conflict criteria was devided by three groups(high severe conflict, middle severe conflict, and less severe conflict) based on conflict boundary by means of a standard vehicle length. After analyzing field surveying data(3hours), we found totally 41 opposing left-turn conflicts. 3 cases are high severe conflict, and another 10 cases are middle severe conflicts, and the other cases are less severe. Studies related in conflict severity are considerably important to evaluate intersection's detailed safety index, and existing studies(purely conflict counting does not consider severity) have a limitation to clearly determine the level of safety of intersections for an application.

  • PDF

Analysis on the Driving Safety and Investment Effect using Severity Model of Fatal Traffic Accidents (대형교통사고 심각도 모형에 의한 주행안전성 및 투자효과 분석)

  • Lim, Chang-Sik;Choi, Yang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.3
    • /
    • pp.103-114
    • /
    • 2011
  • In this study, we discuss a fatal accident severity model obtained from the analysis of 112 crash sites collected since 2000, and the resulting relationship between fatal accidents and roadway geometry design. From the 720 times computer simulations for improving driving safety, we then reached the following conclusions:. First, the result of cross and frequency-analyses on the car accident sites showed that 43.7% of the accidents occurred on the curved roads, 60.7% on the vertical curve section, 57.2% on the roadways with radius of curvature of 0 to 24m, 83.9% on the roads with superelevation of 0.1 to 2.0% and 49.1% on the one-way 2-lane roads; vehicle types involved are passenger vehicles (33.0%), trucks (20.5%) and buses (14.3%) in order of frequency. The results also show that the superelevation is the most influencing factor for the fatal accidents. Second, employing the Ordered Probit Model (OPM), we developed a severity model for fatal accidents being a function of on various road conditions so as to the damages can be predicted. The proposed model possibly assists the practitioners to predict dangerous roadway segments, and to take appropriate measures in advance. Third, computer simulation runs show that providing adequate superelevation on the segment where a fatal accident occurred could reduce similar fatal accidents by at least 85%. This result indicates that the regulations specified in the Rule for Road Structure and Facility Standard (description and guidelines) should be enhanced to include more specific requirement for providing the superelevation.