• 제목/요약/키워드: Road Profile

검색결과 182건 처리시간 0.024초

3차원 노면굴곡 측정을 통한 운용지역 비포장 기동로의 가혹도 DB 구축 (The Severity DB Construction for Unpaved Road Through Measuring 3D Road Profile)

  • 이정환;이상호;조진우;강이석
    • 한국군사과학기술학회지
    • /
    • 제20권2호
    • /
    • pp.231-237
    • /
    • 2017
  • The profile of unpaved road is an important issue in the reliability of endurance test. Efforts on measuring 2D road profile and analyzing the severity have been continued in the study of performing reliable endurance test evaluations through reflecting the results of such measurement and analysis. However, 2D road profile has limitation in measuring the profile in the road width direction because data is obtained along the trailer wheel track. Therefore, in order to measure 3-dimensional shape of road surface and construct severity DB of 3D road profile, Changwon Proving Ground(CPG) of Agency for Defense Development(ADD) developed 3D profilometer which is composed of laser scanner, IMU, GPS, encoder and so on. This paper focuses on the analysis of unpaved road severity using 3D road profile for army operation roads. This results will be used to manage test courses severity of CPG.

차량의 가속내구시험을 위한 TEST ROAD PROFILE 설계방법 (Design Method of Test Road Profile for Vehicle Accelerated Durability Test)

  • 민병훈;정원욱
    • 한국자동차공학회논문집
    • /
    • 제2권1호
    • /
    • pp.128-141
    • /
    • 1994
  • This roport explain the basic theory of desinging the accelerating durability test road and the role of each factors contributing to test road surface profile. Also this road is designed by considering the charactors of vehicle suspension system and condition of driving. In test road, the factors affecting to the vehicle Structural durability are correlation among surface shape of road profile, frequency of vehicle suspension system, distribution of axletwist angle and vibration profile height Road PSD magnitude and frequency delay is used to control these factors relation.

  • PDF

다축 로드 시뮬레이터의 3축 재현 알고리즘 개발 (Development of 3-axial Realization Algorithm of Road Profile for Multi-axial Road Simulator)

  • 류신호;정상화;김종태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.962-965
    • /
    • 2002
  • Full scale durability test in the laboratory is an essential of any fatigue life evaluation of components or structures of the automotive vehicle. Component testing is particularly important in today's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, Hydraulic road simulator is used to carry out the fatigue test and the vibration test. In this paper, the algorithm and software to realize the real road profile are developed. The operation software for simultaneously controlled multi-axial simulator is developed and the input and output data are displayed window based PC controller in real time. The software to generate the real road profile are developed. This paper developed a road profile reappearance software and simultaneously apply 3-axial actuator to white noise, so we verified the propriety of reappearance software through accomplishes an real test.

  • PDF

비포장 시험로의 노면 굴곡 측정 및 가혹도 분석을 위한 노면굴곡측정장비 개발 (Development of Profilometer for Profile Measurement and Severity Analysis of Unpaved Test Courses)

  • 양진생;구상화;배철훈;이상호
    • 한국정밀공학회지
    • /
    • 제24권1호
    • /
    • pp.37-46
    • /
    • 2007
  • The vibration environment essentially companied by vehicle operation on the ground is determined by the shape of road surface, which is called profile. This paper focuses on development of a profile and severity measurement system for unpaved test courses. In general, the profile and severity of unpaved road is an important issue in the reliability of endurance test. In order to measure unpaved road profile and severity, it is necessary to develop a profilometer system. The developed profilometer system is composed of data processing computer, power unit, air compressor and sensors(encoder, vertical gyro and laser displacement) This paper presents the measuring system configuration, measurement principle of road profile and analysis method of road characteristics used at CPG(Changwon Proving Ground) for this purpose.

설계일관성을 반영한 감가속도 프로파일 개발 - 지방부 다차로도로를 중심으로 - (Acceleration and Deceleration Profile Development of Reflecting Road Design Consistency)

  • 최재성;이종학;정상민;조원범;김상엽
    • 한국도로학회논문집
    • /
    • 제15권6호
    • /
    • pp.103-111
    • /
    • 2013
  • PURPOSES : Previous Speed Profile reflects the patterns of speeds in sections of tangents to curves in the roads. However these patterns are uniform of speeds and Acceleration/Deceleration. In oder to supplement these shortcomings. this study made a new profile which can contain factors of Acceleration/Deceleration through theories of Previous Speed Profiles. METHODS : For sakes, this study developed the speed prediction model of Rural Multi-Lane Highways and calculated Acceleration/Deceleration by appling a Polynomial model based on developed speed prediction model. Polynomial model is based on second by second. Acceleration/Deceleration Profile is developed with the various scenarios of road geometric conditions. RESULTS : The longer an ahead tangent length is, The higher an acceleration rate in curve occurs due to wide sight distance. However when there are big speed gaps between two curves, the longer tangent length alleviate acceleration rate. CONCLUSIONS : Acceleration/Deceleration Profile can overview th patterns of speeds and Accelerations/Decelerations in the various road geometric conditions. Also this result will help road designer have a proper guidance to exam a potential geometric conditions where may occur the acceleration/deceleration states.

다축 로드 시뮬레이터의 노면 프로파일 재현 소프트웨어 개발 (Realization Software Development of Road Profile for Multi-axial Road Simulator)

  • 정상화;류신호;김우영;양성모;김택현
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.190-198
    • /
    • 2002
  • Full scale durability test in the laboratory is an essential of any fatigue life evaluation of components or structures of the automotive vehicle. Component testing is particularly important in today's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, hydraulic road simulator is used to carry out the fatigue test and the vibration test. In this paper, the algorithm and software to realize the real road profile are developed. The operation software for simultaneously controlled multi-axial road simulator is developed and the input and output data are displayed window based PC controller in the real time. Futhermore, the software to generate the real road profile are developed. The validity of the software are verified by applying the belgian road, the city road, the highway, and the gravel road. The results of the above experiment show that the real road profiles are realized well after 10th iteration.

타이어의 비선형성 보장을 위한 노면 형상의 재구성 (Regeneration of Road Profile to Compensate Nonlinearties of Tires)

  • 김명규;김광석;유완석
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.199-207
    • /
    • 1999
  • For the stress and vibration analysis of vehicle component by computer simulation, it is necessary to find the forces acting on the vehicle components due to the road profile undulation. A precise modeling of tires is not easy due to nonlinear effects between tire-ground. In this study, a new method is proposed to regenerate road profiles that preserves the same PSD of wheel with a linear tire model. Using the frequency response function between road-wheel , the digital signal processing method, and DADS program , road profile is regenerated from the computer simulation.

  • PDF

가속도계를 이용한 노면형상재현 변위신호 생성 (Generation of Displacement Signal for Realizing Road Profile using the Accelerometer)

  • 김종태;김철우;김택현
    • 한국추진공학회지
    • /
    • 제14권2호
    • /
    • pp.39-45
    • /
    • 2010
  • 차량이나 항공기를 개발하는데 있어서 성능과 내구성에 대한 실험은 필수 과정이지만, 이를 위해서는 많은 개발 비용과 시간이 소요되므로 그 대체 방법으로 시뮬레이터를 이용한 실험이 보편화 되고 있다. 특히 노면의 경우 시뮬레이터에 사용할 변위 데이터를 정량화하기 어렵기 때문에 가속도계를 이용하여 노면 데이터를 습득하는 것이 일반적이다. 본 연구에서는 가속도계를 이용하여 습득한 가속도 신호를 변위 신호로 변환하기 위한 소프트웨어를 개발하여 시뮬레이터에 사용되는 변위신호를 생성하였고 이를 토대로 4축 시뮬레이터를 이용한 실험을 통하여 그 타당성을 검증하였다.

스테레오비전 기반의 도로의 기울기 추정과 자유주행공간 검출 (Stereo-Vision Based Road Slope Estimation and Free Space Detection on Road)

  • 이기용;이준웅
    • 제어로봇시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.199-205
    • /
    • 2011
  • This paper presents an algorithm capable of detecting free space for the autonomous vehicle navigation. The algorithm consists of two main steps: 1) estimation of longitudinal profile of road, 2) detection of free space. The estimation of longitudinal profile of road is detection of v-line in v-disparity image which is corresponded to road slope, using v-disparity image and hough transform, Dijkstra algorithm. To detect free space, we detect u-line in u-disparity image which is a boundary line between free space and obstacle's region, using u-disparity image and dynamic programming. Free space is decided by detected v-line and u-line. The proposed algorithm is proven to be successful through experiments under various traffic scenarios.

국내 도로면 거칠기 특성 분류 기준에 관한 연구 (Classification of the Korean Road Roughness)

  • 최규재;허승진
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.115-120
    • /
    • 2006
  • A Korean Road Roughness Classification(KRC) method is proposed. Using a dynamic road profiling device equipped with the Accelerometer Established Inertial Profiling Reference(AEIPR) method, road profile measurement is performed on various types of public paved roads in Korea. The road profiling data are processed to classify the characteristics of Korean road roughness. The resultant Korean road roughness classification(KRC) is shown different characteristics compared to the road classification proposed by ISO, MIRA, and Wong. The proposed KRC is composed of 8 classes(A-H, very good-poor) based on the power spectral density and is in good agreements with the characteristics of Korean paved road roughness and can be used well in vehicle ride comfort simulation using domestic road profile.