• Title/Summary/Keyword: Road Hazard Map

Search Result 20, Processing Time 0.027 seconds

Development of Hazard Prediction Map S/W for Mountain River Road (산지하천도로 재해지도 작성을 위한 SW 개발)

  • Jang, Dae Won;Yang, Dong Min;Kim, Ki Hong
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.1
    • /
    • pp.75-80
    • /
    • 2009
  • The objectives of this research are to develop hazard prediction map S/W for mountain river road. This mountain river road disaster happens by debris flow, landslide, debris accumulation and this cause are locally rainfall and heavy rainfall. System is constructed to GIS base. This research app lied to Kangwondo. We developed protocol to analyze calamity danger in mountain district area and examined propriety system. Furthermore examined the DB required and expression plan for hazard map creation SW construction by mountain rivers road.

  • PDF

Development of a Road Hazard Map Considering Meteorological Factors (기상인자를 고려한 도로 위험지도 개발)

  • Kim, Hyung Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.133-144
    • /
    • 2017
  • Recently, weather information is getting closer to our real life, and it is a very important factor especially in the transportation field. Although the damage caused by the abnormal climate changes around the world has been gradually increased and the correlation between the road risk and the possibility of traffic accidents is very high, the domestic research has been performed at the level of basic research. The Purpose of this study is to develop a risk map for the road hazard forecasting service of weather situation by linking real - time weather information and traffic information based on accident analysis data by weather factors. So, we have developed a collection and analysis about related data, processing, applying prediction models in various weather conditions and a method to provide the road hazard map for national highways and provincial roads on a web map. As a result, the road hazard map proposed in this study can be expected to be useful for road managers and users through online and mobile services in the future. In addition, information that can support safe autonomous driving by continuously archiving and providing a risk map database so as to anticipate and preemptively prepare for the risk due to meteorological factors in the autonomous driving vehicle, which is a key factor of the 4th Industrial Revolution, and this map can be expected to be fully utilized.

Hazard Map of Road Slope Using a Logistic Regression Model and GIS (Logistic 회귀모형과 GIS기법을 활용한 접도사면 붕괴확률위험도 제작)

  • Kang Ho-Yun;Kwak Young-Joo;Kang In-Joon;Jang Yong-Gu
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.339-344
    • /
    • 2006
  • Slope failures are happen to natural disastrous when they occur in mountainous areas adjoining highways in Korea. The accidents associated with slope failures have increased due to rapid urbanization of mountainous areas. Therefore, Regular maintenance is essential for all slope and conducted to maintain road safety as well as road function. In this study, we take priority of making a database of risk factor of the failure of a slope before assesment and analysis. The purpose of this paper is to recommend a standard of Slope Management Information Sheet(SMIS) like as Hazard Map. The next research, we suggest to pre-estimated model of a road slope using Logistic Regression Model.

  • PDF

Making a Hazard Map of Road Slope Using a GIS and Logistic Regression Model (GIS와 Logistic 회귀모형을 이용한 접도사면 재해위험도 작성)

  • Kang, In-Joon;Kang, Ho-Yun;Jang, Yong-Gu;Kwak, Young-Joo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.1 s.35
    • /
    • pp.85-91
    • /
    • 2006
  • Recently, slope failures are happen to natural disastrous when they occur in mountainous areas adjoining highways in Korea. The accidents associated with slope failures have increased due to rapid urbanization of mountainous areas. Therefore, Regular maintenance is essential for all slope and needs maintenance of road safety as well as road function. In this study, we take priority of making a database of risk factor of the failure of a slope before assesment and analysis. The purpose of this paper is to recommend a standard of Slope Management Information Sheet(SMIS) like as Hazard Map. The next research, we suggest to pre-estimated model of a road slope using Logistic Regression Model.

  • PDF

Assessement of Rockfall Hazard in the Northeast Region of Ulleung-Do (울릉도 북동부 지역의 낙석재해 위험도 평가)

  • Seo, Yong-Seok;Jang, Hyung-Su;Kim, Kwang-Yeom
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.353-363
    • /
    • 2012
  • The geology of Ulleung-Do is dominated by volcanic rocks with low strength and trachytic rocks with high strength but containing vertical joints that yield easily. Consequently, rockfalls along roadcuts are a major geological hazard, with the potential to affect the ring road of Ulleung-Do. In this study, we performed three types of rockfall hazard-risk assessment on the 3-km-long section of the ring road expected to have the highest possibility of rockfall. We used a rockfall ranking sheet in a roadside landslide hazard map, the Slope Stability Inspection Manual for National Highways (Japan), and a rockfall hazard rating system for inspection from the Japan Highway Public Corporation. We also employed the evaluation criteria of 'RHRS' developed by the Federal Highway Administration (FHA). An analysis of roadcuts at 27 sites with regard to geographic and geological conditions resulted in the identification of three classes of rockfall hazard (high, medium, and low). Of note, over 74% of slopes were assessed as high- and medium-class. Finally, a rockfall hazard map of the northeast region of Ulleung-Do was produced based on the evaluation results.

Assessment of geological hazards in landslide risk using the analysis process method

  • Peixi Guo;Seyyed Behnam Beheshti;Maryam Shokravi;Amir Behshad
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.451-454
    • /
    • 2023
  • Landslides are one of the natural disasters that cause a lot of financial and human losses every year It will be all over the world. China, especially. The Mainland China can be divided into 12 zones, including 4 high susceptibility zones, 7 medium susceptibility zones and 1 low susceptibility zone, according to landslide proneness. Climate and physiography are always at risk of landslides. The purpose of this research is to prepare a landslide hazard map using the Hierarchical Analysis Process method. In the GIS environment, it is in a part of China watershed. In order to prepare a landslide hazard map, first with Field studies, a distribution map of landslides in the area and then a map of factors affecting landslides were prepared. In the next stage, the factors are prioritized using expert opinion and hierarchical analysis process and nine factors including height, slope, slope direction, geological units, land use, distance from Waterway, distance from the road, distance from the fault and rainfall map were selected as effective factors. Then Landslide risk zoning in the region was done using the hierarchical analysis process model. The results showed that the three factors of geological units, distance from the road and slope are the most important have had an effect on the occurrence of landslides in the region, while the two factors of fault and rainfall have the least effect The landslide occurred in the region.

Design of Road Spatial Information Database for Urban Disaster Management : Focused on Evacuation Vulnerability (방재관점에서의 도로 공간데이터베이스 설계 : 대피위험도를 중심으로)

  • Kim, Ji-Young;Kim, Jung-Ok;Kim, Yong-Il;Yu, Ki-Yun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.413-416
    • /
    • 2007
  • To construct road spatial information database, it is the main object of this study that an analysis of road factors and furthermore this is used to the rescue activities in case of urban disasters. When urban disasters such as earthquake or explosion cause fire and collapses people of the affected region happen to evacuate. But only to manage roads and monitor traffic volume, the road data is designed and managed using digital topographic map so it is short that the design of road spatial data to prevent disasters. In this study, we tried to suggest the evaluative factors of evacuation to design database : road width, traffic volume, the fixed or movable obstacles installed, the surrounding environments that dominate the land-use planning, the uses, materials, structures, sizes, and densities of the buildings. Thus, these could provide fundamental data to determine the disasters management planning for evacuation and rescue activities, to evaluate the riskiness, and to draw up hazard information map.

  • PDF

Complex Disaster Risk Assessment of Local Road using a Landslide Hazard Map (산사태위험지도를 이용한 도로중심 복합재난 위험도 평가)

  • Kim, Min-Ho;Jang, Chang-Deok;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.31-40
    • /
    • 2022
  • Domestic disaster risk maps are mainly produced and studied as a single disaster map by grid unit and disaster type. In particular, it is necessary to present an evaluation method of the disaster risk map that is more suitable for the relevant facility (local road) in order to utilize the work of practitioners who are mainly in charge of facility maintenance. In this study, an evaluation method was presented to evaluate the risk with a focus on local roads by using the landslide risk map and debris flow risk map provided by the Korea Forest Service. In addition, the risk was evaluated and verified for the provinces located in Gangwon-do. As a result of the evaluation, it was possible to evaluate the risk of grades 1 to 5 for 1,513 evaluation sections in the evaluation section with a total length of 234.59 km.

Seismic Landslide Hazard Maps in Ul-Ju Ul-san Korea (지진에 대한 사면의 재해위험지도 작성 - 울산시 울주군 지역을 중심으로-)

  • 조성원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.89-96
    • /
    • 2000
  • Landslide damage comprise most part of the damages from the earthquake and it only causes the damage to lives and structures directly but also cease the operation of social system by road or lifeline failure. For these reasons hazard assesment on the landslides has been recognized very important. And hazard maps have been used to visualize the hazard of the landslide. In this study as first step for application of hazard map to domestic cases hazard maps are made for the Ul-Joo Ul-san Korea, Where the Yan-san faults are located. For building hazard maps the degree of hazard are evaluated based on Newmark displacement and the resulting maps are constructed by GIS technique. In hazard assesment maximum ground acceleration obtained from attenuation equation of wave propagation and design earthquake acceleration suggested by Ministry of construction are used for acceleration term. Hazard maps are made by GIS programs Arc/Info and Arc/View based on the digital maps and data from lab tests and elastic wave surveys The maps show the possible landslide regions significantly and the displacements of slide are proportional to the slope angles.

  • PDF

Hazard Risk Assessment for National Roads in Gangneung City (강릉지역 국도의 재해위험성 평가)

  • Kim, Gi-Hong;Won, Sang-Yeon;Youn, Jun-Hee;Song, Yeong-Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.33-39
    • /
    • 2008
  • Typhoon Lusa in 2002 and Typhoon Maemi in 2003 caused the worst damage of landslide and debris flow to Gangwon-do. This damage includes severe damage in riverside road. The damage register indicates that this damage is concentrated on mountain areas in Gangwon-do. In recent years, the studies on GIS application to predicting landslide and debris flow have been progressing actively. Landslide risk map managed by The Forest Service is the representative one. In this study, we generated landslide and debris flow hazard maps using statistical analysis and deterministic analysis in Gangnung area where Typhoons caused severe damage to riverside roads. We built damage point GIS DB from damage registers of National Road Maintenance Agency and field survey, and verified accuracy of landslide and debris flow hazard maps using GIS methods.

  • PDF