• Title/Summary/Keyword: Road Bump

Search Result 50, Processing Time 0.022 seconds

Performance Evaluation of a Semi-active Vehicle Suspension Using Piezostack Actuator Valve (압전작동기 밸브를 이용한 반능동 차량현가장치의 성능 고찰)

  • Han, Chulhee;Yoon, Gun-Ha;Park, Young-Dai;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.82-88
    • /
    • 2016
  • This paper proposes a new type of semi-active direct-drive valve(DDV) car suspension system using piezoelectric actuator associated with displacement amplifier. As a first step, controllable piezoelectric DDV damper is designed and governing equation of a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the piezostack DDV damper is constructed. After deriving the equations of the motion, in order to control spool displacement and damping force the skyhook controller is designed and applied. The performance evaluation of the proposed semi-active suspension system is conducted with different displacement of spool. Then, the ride comfort analysis is undertaken in time domain with bump road profile.

Development of Millimeter wave Radar Front-end for Automobile (차량용 밀리파 레이더 프론트엔드의 개발)

  • Shin, Cheon-Woo;Lee, Kyu-Han;Park, Hong-Min
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.53-56
    • /
    • 2001
  • This paper has been developed a millimeter-wave radar to prevent car collision. This system needs to progress the problem as follows; (1) Increase of traffic accidents causing damage and injuries due to the increased number of motor vehicles and long distance driving, (2) Need for a device to help drivers who are in trouble due to bad weather conditions. (3) Need for a millimeter-wave radar as obstacles which need to be detected are small. This system is composited with some major technologies, Narrow beams to recognize obstacles or other objects, One-side circuit technology to prevent interference between electric waves, and Parts designed for radar products which are able to transmit millimeter - waves. The system has a various a application Field, Car distance auto-control system, prevent bump collision due to unexpected stoppage of the front car or careless driving, obstacle warning system, Car following system, and industrial and military purposes system. We have a looking forward to propose to develop field tests under various road conditions and hybrid car sensor by combining with other sensors

  • PDF

Optimal Design of Magnetorheological Shock Absorbers for Passenger Vehicle via Finite Element Method (자기유변유체를 이용한 승용차량 쇽 업소버의 유한요소 최적설계)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.169-176
    • /
    • 2008
  • This paper presents optimal design of controllable magnetorheological(MR) shock absorbers for passenger vehicle. In order to achieve this goal, two MR shock absorbers (one for front suspension; one for rear suspension) are designed using an optimization methodology based on design specifications for a commercial passenger vehicle. The optimization problem is to find optimal geometric dimensions of the magnetic circuits for the front and rear MR shock absorbers in order to improve the performance such as damping force as an objective function. The first order optimization method using commercial finite element method(FEM) software is adopted for the constrained optimization algorithm. After manufacturing the MR shock absorbers with optimally obtained design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of conventional shock absorbers. In addition, vibration control performances of the full-vehicle installed with the proposed MR shock absorbers are evaluated under bump road condition and obstacle avoidance test.

Performance Evaluation of 6WD Military Vehicle Featuring MR Damper (MR댐퍼를 적용한 6WD 군용차량의 성능평가)

  • Ha, Sung-Hoon;Choi, Seung-Bok;Rhee, Eun-Jun;Kang, Pil-Soon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • This paper proposes a new type of MR(magnetorheological) fluid based suspension system and applies it to military vehicle for vibration control. The suspension system consists of gas spring and MR damper. The nonlinear behavior of spring characteristics is evaluated with respect to the wheel travel and damping force model due to viscosity and yield stress of MR fluid is derived. Subsequently, a military vehicle of 6WD is adopted for the integration of the MR suspension system and its nonlinear dynamic model is established by considering vertical, pitch and roll motion. Then, a sky-hook controller associated with semi-active actuating condition is designed to reduce the imposed vibration. In order to demonstrate the effectiveness of the proposed MR suspension system, computer simulation is undertaken showing vibration control performance such as roll angle and pitch angle evaluated under bump and random road profiles.

Comparative Evaluation of Sky-Hook Controllers for a Full Car Model with Active or Semi-Active Suspension Systems (능동과 반능동 현가장치로 된 전차량 모델에 대한 스카이훅 제어기의 비교 평가)

  • Yun, Il-Jung;Im, Jae-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.614-621
    • /
    • 2001
  • The controllers for a full car 7-DOF model with 4 active or semi-active suspension units are designed and evaluated in this research. The control algorithms for suspension systems, such as full state feedback active, full state feedback semi-active, sky-hook active, sky-hook semi-actvie, and on-off suspension systems, are analyzed and evaluated with respect to ride comfort. The vehicle dynamic performances are expressed by response curves to a bump input, performance indices for asphalt road input, and frequency characteristic curves. Heaving, rolling, and pitching inputs are applied to the vehicle dynamic system to evaluate frequency characteristics. The simulation results show that the ride quality of the sky-hook controller approaches that the full state feedback controller more closely in semi-active suspension system than in active suspension system. For the implementation of a vehicle with sky-hook suspension control systems in this paper, 7 velocity sensors are required to measure the states.

  • PDF

Model-Driven Design Framework for Future Combat Vehicle Development based on Firepower and Mobility: (1) Integrated Performance Modeling (화력과 기동의 통합성능을 고려한 미래 전투차량의 해석 기반 설계 프레임웍 연구: (1) 통합성능분석 모델개발)

  • Lim, Sunghoon;Lim, Woochul;Min, Seungjae;Lee, Tae Hee;Ryoo, Jae Bong;Pyun, Jai-Jeong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.316-323
    • /
    • 2014
  • This paper proposes the 3D modeling and simulation technique for predicting the integrated performance of combat vehicle. To consider the practical driving and firing condition of a combat vehicle, the full vehicle model, which can define the six degrees-of-freedom of vehicle motion and various firing angles, is developed. The critical design parameters such as the stiffness and damping coefficient of suspension system are applied to construct the analysis model of vehicle. A simple ballistic model, which incorporates the empirical interior ballistic model and the point mass trajectory model, is built to estimate the firing range and the firing recoil force. To predict the integrated performance and analyze the effect of system parameters, MATLAB/SIM-ULINK model of a combat vehicle for performing the real time simulation is also developed. Several simulation tests incorporating the road bump and the firing recoil force are presented to confirm the effectiveness of the proposed vehicle model.

Driving Dynamic Characteristics of Tractor-Trailer Type Transporter for Large Scale Precision Equipment (대형 정밀장비 탑재용 트랙터-트레일러형 차량의 주행 동특성)

  • Ha, Taewan;Oh, Sanghoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.687-696
    • /
    • 2019
  • To identify the driving dynamic characteristics of the Tractor-Trailer Type Transporter for mounting a large scale precision equipment, real vehicle driving tests on the 3 inch-bump-space-road were performed. And using general Dynamics Analysis Program - RecurDyn(V8R5), Dynamics M&S were carried out assuming the similar condition with real tests. Then the acceleration data obtained from real tests and M&S were analyzed and compared with each other in the part of root-mean-square-acceleration($g_{rms}$), peak-acceleration($g_{peak}$) and frequencies. In simple view of the $g_{rms}$ & $g_{peak}$, although the results of MRBD are more similar to ones of the real vehicle driving tests, but the results of RFlex have more information to get various useful dynamic characteristics.

Analysis of PM (Personal Mobility) Traffic Accident Caracteristics and Cause of Death (PM (Personal Mobility) 교통사고 특성 및 사망사고 발생 요인 분석)

  • Han, Sangyeou;Lee, Chulgi;Yun, Ilsoo;Yoon, Yeoil;Na, Jaepil
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.100-118
    • /
    • 2021
  • In this study, PM accidents (1,603case) and bicycle accidents (14,672case) that occurred in the last three years were analyzed to determine the characteristics of PM traffic accidents. In particular, PM traffic accidents were divided into perpetrators and victims to determine the characteristics in detail. For PM accidents, the analysis was conducted on the status of each road grade, road type, weather condition, accident type, day and night occurrence, and vehicle type. The number of PM accidents that occurred in 2019 increased by 129%, and deaths increased by more than 200% compared to the previous year. The proportion of pedestrian accidents among PM traffic accidents was higher than that of bicycle accidents. Therefore, regulations on PM traffic are necessary. For the 20 deaths of PM, a detailed analysis was conducted to analyze the factors of traffic accidents. PM fatalities occurred in 50% of vehicle accidents, and 7 out of 10 vehicle accidents occurred at night. This is believed to have been caused by falling or overturning due to an obstacle, such as a depression in the road pavement or a speed bump.

Convergence study on the intravenous access of paramedics in ambulances (구급차 내에서 수행한 구급대원의 정맥로 확보에 관한 융합연구)

  • Kim, Jin-Hyeon;Shim, Gyu-Sik
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.177-182
    • /
    • 2017
  • The purpose of the study is to investigate the intravenous access of paramedics in ambulance. The study consisted of confidence change in pre and post intravenous access by driving condition and speed of the vehicle. The research subjects were 30 119 paramedics (20 level 1 emergency medical technicians, 10 nurses), and 6 ambulance driving conditions were established in order to measure the number of attempts at intravenous access. The data was collected for 9 days from May 18 through May 27, 2017. The results show no disparities in number of attempts in terms of stop conditions and flat section driving conditions(p=.161) although there were significant disparities in unpaved road(p=.003), speed bump(p=.005), curve(p=.022), and slope(p=.003) section driving conditions. Confidence appeared to significantly rise(p=.000) after the experiment. In conclusion, it is recommended that swift intravenous access inside an ambulance while driving is attempted when the vehicle has come to a stop or a flat section and paramedics should maintain their confidence in intravenous access through continued training.

Development of Lane and Vehicle Headway Direction Recognition System for Military Heavy Equipment's Safe Transport - Based on Kalman Filter and Neural Network - (안전한 군용 중장비 수송을 위한 차선 및 차량 진행 방향 인식 시스템 개발 - 칼만 필터와 신경망을 기반으로 -)

  • Choi, Yeong-Yoon;Choi, Kwang-Mo;Moon, Ho-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.139-147
    • /
    • 2007
  • In military transportation, the use of wide trailer for transporting the large and heavy weight equipments such as tank, armoured vehicle, and mobile gunnery is quite common. So, the vulnerability of causing traffic accidents for these wide military trailer to bump or collide with another car in adjacent lane is very high due to its broad width in excess of its own lane's width. Also, the possibility of these strayed accidents can be increased especially by the careless driver. In this paper, the recognition system of lane and vehicle headway direction is developed to detect the possible collision and warn the driver to prevent the fatal accident. In the system development, Kalman filtering is used first to extract the border of driving lane from the video images supplied by the CCD camera attached to the vehicle and the driving lane detection is completed with regression analysis. Next, the vehicle headway direction is recognized by using neural network scheme with the extracted parameters of the detected driving lane feature. The practical experiments for the developed system are also carried out in the real traffic road of Seoul city area and the results show us the more than 90% accuracy in recognizing the driving lane and vehicle headway direction.