• Title/Summary/Keyword: River natural map

Search Result 50, Processing Time 0.032 seconds

Mapping Inundation of Vulnerable Agricultural Land by Considering the Characteristics of Drainage and Terrain Types - Case study in Chungcheongnam-do - (지리 및 배수특성을 고려한 농경지 침수 취약성 지도 작성 연구 - 충청남도를 대상으로 -)

  • Lee, Gyeongjin;Cha, Jungwoo
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.2
    • /
    • pp.127-135
    • /
    • 2015
  • In recent years, meteorological disasters have frequently occurred in rural areas. As a result, there have been growing concerns over the protective measures needed. In order to avoid natural risks and damage, and to strengthen countermeasure to meteorological disasters, local governments needs to be prepared. Therefore, this paper seeks to prevent meteorological disasters through mapping of inundation vulnerability in agricultural land, Chungcheongnam-do. In doing so, this study were considered 5 variables (i.e. precipitation, region of altitude below 50m, region of slope gradient is below 10 degree, distance from river within less 50m) for creating vulnerability map. The precipitation was excluded in five variables. Since, the precipitation which include Daily maximum precipitation, 2-Daily maximum precipitation, summer precipitation was not any correlation among them. The results of analysing four variables, exclusive of precipitation, were showed that the agricultural lands where located in Dangjin, Buyeo, Hongseong and Asan were low correlation of inundation vulnerability by overlapping analysis. Moreover, The correlation analysis was showed low correlation between each factors and the annual average area of agricultural lands' inundation, whereas, the correlation analysis which was overlapping each factor showed high correlation. In conclusion, in order to create reliable vulnerability map in agricultural lands, Chungcheongnam-do, it must be considered to overlap analysis of the four main factors such region of altitude below 50m, region of slope gradient is below 10 degree, distance from river within less 50m. We suppose that this study's analysis can help to set the preparedness site of agricultural lands inundation.

Predicting the likelihood of impaired stream segments using Geographic Information System on Abandoned Mine Land in Gangwon Province

  • Lee, Ju-Young;Yang, Jung-Suk;Choi, Jae-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1081-1083
    • /
    • 2007
  • The study in river basin has been performed for the identify water quality impaired stream segments, to create a priority ranking of those segments, and to calculate the heavy metal ion distribution for each impaired segment based on chemical and physical water quality standards. Two methods for modeling the potential area-specific heavy metal distribution are pursued in this study. First, a novel approach focuses on distance. Heavy metal distribution can be associated with a particular small geographic area. Based on the derived estimates an distribution map can be generated. Second, the approach is used the near watershed by means of kriging interpolation algorithm. These approaches provide an alternative distribution mapping of the area. The exposure estimates from both of these modeling methods are then compared with other environmental monitoring data. A GIS-based model will be used to mimic the hierarchical stream structure and processes found in natural watershed. Specifically, the relationship between landscape variables and reach scale habitat conditions most influential found in the Abandoned mine will be explored.

  • PDF

FEASIBILITY MAPPING OF GROUND WATER YIELD CHARACTERISTICS USING WEIGHT OF EVIDENCE TECHNIQUE: A CASE STUDY

  • Heo, Seon-Hee;Lee, Ki-Won
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.430-433
    • /
    • 2005
  • In this study, weight of evidence(WOE) technique based on the bayesian method was applied to estimate the groundwater yield characteristics in the Pocheon area in Kyungki-do. The ground water preservation depends on many hydrogeologic factors that include hydrologic data, landuse data, topographic data, geological map and other natural materials, even with man-made things. All these data can be digitally collected and managed by GIS database. In the applied technique of WOE, The prior probabilities were estimated as the factors that affect the yield on lineament, geology, drainage pattern or river system density, landuse and soil. We calculated the value of the Weight W+, W- of each factor and estimated the contrast value of it. Results by the ground water yield characteristic calculations were presented in the form of posterior probability map to the consideration of in-situ samples. It is concluded that this technique is regarded as one of the effective technique for the feasibility mapping related to detection of groundwater bearing zones and its spatial pattern.

  • PDF

Estimation of fractal dimension for Seolma creek experimental basin on the basis of fractal tree concept (Fractal 나무의 개념을 기반으로 한 설마천 시험유역의 Fractal 차원 추정)

  • Kim, Joo-Cheol;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.1
    • /
    • pp.49-60
    • /
    • 2021
  • This study presents a methodology to estimate two distinct fractal dimensions of natural river basin by using fractal tree concept. To this end, an analysis is performed on fractal features of a complete drainage network which consists of all possible drainage paths within a river basin based on the growth process of fractal tree. The growth process of fractal tree would occur only within the limited drainage paths possessing stream flow features in a river basin. In the case of small river basin, the bifurcation process of network is more sensitive to the growth step of fractal tree than the meandering process of stream segment, so that various bifurcation structures could be generated in a single network. Therefore, fractal dimension of network structure for small river basin should be estimated in the form of a range not a single figure. Furthermore, the network structures with fractal tree from this study might be more useful information than stream networks from a topographic or digital map for analysis of drainage structure on small river basin.

Management strategy through analysis of habitat suitability for otter (Lutra lutra) in Hwangguji Stream (황구지천 내 수달(Lutra lutra) 서식지 적합성 분석을 통한 관리 전략 제안)

  • Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.4
    • /
    • pp.1-14
    • /
    • 2024
  • Otters, designated as Class I endangered wildlife due to population declines resulting from urban development and stream burial, have seen increased appearances in freshwater environments since the nationwide ban on stream filling in 2020 and the implementation of urban stream restoration projects. There is a pressing need for scientific and strategic conservation measures for otters, an umbrella and vulnerable species in aquatic ecosystems. Therefore, this study predicts potential otter habitats using the species distribution model MaxEnt, focusing on Hwangguji Stream in Suwon, and proposes conservation strategies. Otter signs were surveyed over three years from 2019 to 2021 with citizen scientists, serving as presence data for the model. The model's outcomes were enhanced by analyzing 'river nature map' as a boundary. MaxEnt compared the performance of 60 combinations of feature classes and regularization multipliers to prevent model complexity and overfitting. Additionally, unmanned sensor cameras observed otter density for model validation, confirming correlations with the species distribution model results. The 'LQ-5.0' parameter combination showed the highest explanatory power with an AUC of 0.853. The model indicated that the 'adjacent land use' variable accounted for 31.5% of the explanation, with a preference for areas around cultivated lands. Otters were found to prefer shelter rates of 10-30% in riparian forests within 2 km of bridges. Higher otter densities observed by unmanned sensors correlated with increasing model values. Based on these results, the study suggests three conservation strategies: establishing stable buffer zones to enhance ecological connectivity, improving water quality against non-point source pollution, and raising public awareness. The study provides a scientific basis for potential otter habitat management, effective conservation through governance linking local governments, sustainable biodiversity goals, and civil organizations.

Assessment of Rainfall Runoff and Flood Inundation in the Mekong River Basin by Using RRI Model

  • Try, Sophal;Lee, Giha;Yu, Wansik;Oeurng, Chantha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.191-191
    • /
    • 2017
  • Floods have become more widespread and frequent among natural disasters and consisted significant losses of lives and properties worldwide. Flood's impacts are threatening socio-economic and people's lives in the Mekong River Basin every year. The objective of this study is to identify the flood hazard areas and inundation depth in the Mekong River Basin. A rainfall-runoff and flood inundation model is necessary to enhance understanding of characteristic of flooding. Rainfall-Runoff-Inundation (RRI) model, a two-dimensional model capable of simulating rainfall-runoff and flood inundation simultaneously, was applied in this study. HydoSHEDS Topographical data, APPRODITE precipitation, MODIS land use, and river cross section were used as input data for the simulation. The Shuffled Complex Evolution (SCE-UA) global optimization method was integrated with RRI model to calibrate the sensitive parameters. In the present study, we selected flood event in 2000 which was considered as 50-year return period flood in term of discharge volume of 500 km3. The simulated results were compared with observed discharge at the stations along the mainstream and inundation map produced by Dartmouth Flood Observatory and Landsat 7. The results indicated good agreement between observed and simulated discharge with NSE = 0.86 at Stung Treng Station. The model predicted inundation extent with success rate SR = 67.50% and modified success rate MSR = 74.53%. In conclusion, the RRI model was successfully used to simulate rainfall runoff and inundation processes in the large scale Mekong River Basin with a good performance. It is recommended to improve the quality of the input data in order to increase the accuracy of the simulation result.

  • PDF

Assessment of Water Purification Plant Vegetation for Enhancement of Natural Purification in Mankyeong River (만경강 본류의 자연정화능 향상을 위한 식생학적 진단)

  • Lee, Kyeong-Bo;Kim, Chang-Hwan;Kim, Jong-Gu;Lee, Deog-Bae;Park, Chan-Won;Na, Seoung-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.153-165
    • /
    • 2003
  • This study was conducted to get some information on plants abilities to enhance water purification and to find out away to conserve the ecosystem in Mankyeong river. Vegetation were surveyed at 4 sites pointing by 1:5,000 topographical map, from June 2001 through March 2002. T-N content in water were high in all sites of Mankyeong river, the average T-N levels were 8.59 and 17.23 mg/L, summer and winter, respectively. The average T-P level during summer was 0.47 mg/L but that was 1.79 mg/L during winter. The BOD level in Mankyeong upstream ranged from 0.95 to 2.57 mg/L which would be in I or II grade according to water quality criteria by Ministry of Environment but BOD level in Mankyeong downstream ranged from 6.87 to 9.72 mg/L. The plant species of river flora were found 251, 98 and 85, upstream midstream and down stream, respectively. Among the surveyed plants, Ceratophyllum demersum, submerged plant and Nuphar subinteperrimum took up higher contents of phosphate and nitrogen than other piano. The Phragmites communis and Zizania latifolia having much biomass were thought to be suitable plants for enhancement of e natural water purification.

Soil Erosion and river-bed change of the Keum river basin using by GIS and RS (GIS와 RS를 이용한 금강유역 토양침식과 하상변화 연구)

  • Lee, Jin-Young;Kim, Ju-Young;Yang, Dong-Yoon;Nahm, Wook-Hyun;Kim, Jin-Kwan
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2006
  • Flooding hazard caused by natural and artificial environmental changes is closely associated with change in river bed configuration. This study is aimed at explaining a river-bed change related to soil erosion in the Keum river basin using GIS and RS. The USLE was used to compute soil erosion rate on the basis of GIS. River-bed profiles stretching from Kongju to Ippo were measured to construct a 3D-geomorphological map. The river-bed change was also detected by remote sensing images using Landsat TM during the period of 1982 to 2000 for the Keum river. The result shows that USLE indicates a mean soil erosion rate of $1.8\;kg/m^2/year$, and a net increase of a river-bed change at a rate of $+5\;cm/m^2$/year in the Kangkyeong area. The change in river-bed is interpreted to have been caused by soil erosion in the downstream of the Keum river basin. In addition river-bed change mainly occurred on the downstream of the confluence where tributaries and the main channel meet. Other possible river-bed change is caused by a removal of fluvial sand aggregates, which might have resulted in a net decrease of exposed area of sediment distribution between 1991 and 1995, while a construction of underwater structures, including a bridge, a reclamation of sand bars for rice fields and dikes, resulted in an increase of the exposed area of river-bed due to sediment accumulation.

  • PDF

Development of a Prototype for GIS-based Flood Risk Map Management System (GIS를 이용한 홍수위험지도 관리시스템 프로토타입 개발에 관한 연구)

  • Kim, Kye-Hyun;Yoon, Chun-Joo;Lee, Sang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.359-366
    • /
    • 2002
  • The damages from the natural disasters, especially from the floods, have been increasing. Therefore, it is imperative to establish a BMP to diminish the damages from the floods and to enhance the welfare of the nation. Developed countries have been generating and utilizing flood risk maps to raise the alertness of the residents, and thereby achieving efficient flood management. The major objectives of this research were to develop a prototype management system for flood risk map to forecast the boundaries oi the inundation and to plot them through the integration of geographic and hydrologic database. For more efficient system development, the user requirement analysis was made. The GIS database design was done based on the results from the research work of river information standardization. A GIS database for the study area was built by using topographic information to support the hydrologic modeling. The developed prototype include several modules; river information edition module, map plotting module, and hydrologic modeling support module. Each module enabled the user to edit graphic and attribute data, to analyze and to represent the modeling results visually. Subjects such as utilization of the system and suggestions for future development were discussed.

Flood Risk Mapping with FLUMEN model Application (FLUMEN 모형을 적용한 홍수위험지도의 작성)

  • Cho, Wan Hee;Han, Kun Yeun;Ahn, Ki Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.169-177
    • /
    • 2010
  • Recently due to the typhoon and extreme rainfall induced by abnormal weather and climate change, the probability of severe damage to human life and property is rapidly increasing. Thus it is necessary to create adequate and reliable flood risk map in preparation for those natural disasters. The study area is Seo-gu in Daegu which is located near Geumho river, one of the tributaries of Nakdong river. Inundation depth and velocity at each time were calculated by applying FLUMEN model to the target area of interest, Seo-gu in Daegu. And the research of creating flood risk map was conducted according to the Downstream Hazard Classification Guidelines of USBR. The 2-dimensional inundation analysis for channels and protected lowland with FLUMEN model was carried out with the basic assumption that there's no levee failure against 100 year precipatation and inflow comes only through the overflowing to the protected lowland. The occurrence of overflowing was identified at the levee of Bisan-dong located in Geumho watershed. The level of risk was displayed for house/building residents, drivers and pedestrians using information about depth and velocity of each node computed from the inundation analysis. Once inundation depth map and flood risk map for each region is created with this research method, emergency action guidelines for residents can be systemized and it would be very useful in establishing specified emergency evacuation plans in case of levee failure and overflowing resulting from a flood.