• Title/Summary/Keyword: River downstream of dam

Search Result 255, Processing Time 0.023 seconds

Evaluation of the Dam Release Effect on Water Quality using Time Series Models (시계열 모형의 적용을 통한 댐 방류의 수질개선 효과 검토)

  • Kim, Sangdan;Yoo, Chulsang
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.685-691
    • /
    • 2004
  • Water quality forecasting with long term flow is important for management and operation of river environment. However, it is difficult to set up and operate a physical model for water quality forecasting due to large uncertainty in the data required for model setting. Therefore, relatively simpler stochastic approaches are adopted for this problem. In this study we try several multivariate time series models such as ARMAX models for the possible substitute for water quality forecasting. Those models are applied to the BOD and COD levels at Noryangin station, Han river, and also evaluated the effect of release from Paldang dam on them. Monthly BOD and COD data from 1985 to 1991 (7 years) are used for model building and another two year data for model testing. As a result of the study, the effect of improvement on water quality is much more effective combining with the water quality improvement of dam release than considering only increment of dam release in the downstream Han river.

An Analysis of Flushing Effects for Instantaneous Contaminants Input into River (하천에 순간적으로 유입된 오염물질의 플러싱 효과 분석)

  • Jung, Jae-Wook;Kim, Soo-Youl;Kim, Jin-Young;Yoon, Sei-Eui
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.3 s.14
    • /
    • pp.43-50
    • /
    • 2004
  • This study had been performed to analyze flushing effects for instantaneous contaminants input with changing dam discharge in River. RMA-2 and RMA-4 models were applied to the downstream part of the Han River(from Jamsil submerged weir to Singok submerged one) The longitudinal dispersion coefficient of $50m^2/s$ was used. The four cases of dam discharges were selected as $500m^3/s,\;1000m^3/s,\;1500m^3/s$ and $2000m^3/s$, respectively, for 1 hour. The drought flow was fixed $200m^3/s$ in the Han River. The arrival time and the concentration of contaminant, the area of dispersion were estimated with RMA-4 model in the downstream part of the Han River. The arrival time which the concentration of contaminants become under 1ppm was analyzed with the stagnant and the instantaneous inflow contaminant at the section of Sungsan Bridge. The more increasing a dam discharge, the more short a dilution time of contaminant. The relation between the dam discharge and dilution time shows linearity. The instantaneous contaminant input was sensitively affected by the dam discharge than the stagnant contaminant one in the river. If it is tried to flush with a temporally increased dam discharge, it should be understood the range of overflowed contaminant dispersion from main channel to tributary channel.

The Characteristics of Distribution on the Heavy Metals in Soil of Kumho River Basin (금호강안의 토양중 중금속 분포특성)

  • 양성호;강선태;권오억
    • Journal of Environmental Health Sciences
    • /
    • v.16 no.2
    • /
    • pp.83-87
    • /
    • 1990
  • This study was carried out to investigate the pollution of heavy metals in soil of seven stations from the upper spot (Yeungchun Dam) of Kumho River to the downstream(Gangchang Bridge). The results obtained were as follows: 1. The content of heavy metals in soil of Kumho River basin was highest at Gangchang Bridge [expresed in $\mu$g/g : Mn(246.0), Cd(1.90), Fe(551.2), Cu(108.2), Zn(86.4), Cr(80.2), respectively]. Whereas, the content of heavy metals expect for Mn, Cu was lowest at Yeungchun Dam [Cd(0.40), Fe(548.0), Zn(30.7), Cr(6.2), respectively] Also, the content of Cr, Zn was increased when the sampling areas are changed from upstream to downstream except for Hayang Bridge, and Hayang Bridge was the diverging point of the heavy metals content. 2. There were relatively correlated between Mn : FE, Cu, Zn, Cr, Fe : Cu, Zn, Cr(0.40 < $\left$\mid${r}\right$\mid$$ < 0.70), and were high correlated between Cd : Mn, Fe, Cu, Zn, Cu : Zn, Zn : Cr(0.70 < $\left$\mid${r}\right$\mid$$ < 0.90). Particularly, there was higest correlated between Cd : Cr, Cu : Cr(0.90< $\left$\mid${r}\right$\mid$$ < 1.0)

  • PDF

Water Quality Forecasting of the River Applying Ensemble Streamflow Prediction (앙상블 유출 예측기법을 적용한 하천 수질 예측)

  • Ahn, Jung Min;Ryoo, Kyong Sik;Lyu, Siwan;Lee, Sang Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.359-366
    • /
    • 2012
  • Accurate predictions about the water quality of a river have great importance in identifying in-stream flow and water supply requirements and solving relevant environmental problems. In this study, the effect of water release from upstream dam on the downstream water quality has been investigated by applying a hydological model combined with QUAL2E to Geum River basin. The ESP (Ensemble Stream Prediction) method, which has been validated and verified by lots of researchers, was used to predict reservoir and tributary inflow. The input parameters for a combined model to predict both hydrological characteristics and water quality were identified and optimized. In order to verify the model performance, the simulated result at Gongju station, located at the downstream from Daecheong Dam, has been compared with measured data in 2008. As a result, it was found that the proposed model simulates well the values of BOD, T-N, and T-P with an acceptable reliability.

Determination of Investment Priority for River Improvement Project at Downstream of Dams Using PROMETHEE (PROMETHEE 기법을 이용한 댐 직하류 하천정비사업 투자우선순위 결정)

  • Kim, Gil Ho;Sun, Seung Pyo;Yeo, Kyu Dong;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.41-51
    • /
    • 2012
  • Sometimes, there exist many alternatives for doing a SOC project. However, the limitation of the fund requires the determination of investment priority for the alternatives. This may be performed according to the degree of importance of individual alternatives. Especially, the river improvement project at the downstream of dams has complex and various values and this characteristics make it difficult decision-maker to do reasonable determination. This study aims to determine an investment priority of 33 alternatives in the river improvement project at the downstream of dams using PROMETHEE method which has advantages in determining the priority. In this study, we determined evaluation criteria and attributes by considering the functions and objectives of the river improvement project at the downstream of dams. The eigenvector method in AHP was used to estimate the relative importance of evaluation criterion. Based on the estimation, we determined investment priority of 33 alternatives by PROMETHEE method and the priority of alternatives was derived in the order of Juam regulation dam, Unmun dam, Yongdam dam and so on. The results of this study could provide a reasonable standard to the decision-maker for the determination of investment priority of alternatives.

Analysis of Water Circulation Characteristics for Hydraulic and Water Temperature Investigation in Paldang Reservoir (팔당호의 수리 및 수온 조사를 통한 물순환특성 분석)

  • Choi, Hwang Jeong;Cho, Yong-Chul;Yu, Soonju;Song, Yong Sik;Ryu, Ingu
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.12-22
    • /
    • 2019
  • This study investigated the spatial and temporal water circulation characteristics of Paldang Reservoir by continuous hydraulic and water temperature survey. Due to differences in water temperature and discharge pattern of Ipo Weir and Cheongpyeong Dam, the flow and temperature fluctuations were different in sections of Namhan River and Bukhan River in Paldang Reservoir. At the stratification period, the water temperature of the discharge of Ipo Weir was higher than that of the Cheongpyeong Dam. Therefore, in the surface layer of the downstream of Bukhan River, relatively high temperature water is located and back water phenomenon occurred, and convergence zone is formed. In the downstream section of Namhan River, low-temperature water was distributed in the middle and lower layers, and the upstream flow appeared to be difficult to mix with the surface layer.

Forecasting of Peak Flood Stage at Downstream Location and the Flood Travel Time by Hydraulic Flood Routing (수리학적 홍수추적에 의한 댐 방류시 하류수위 및 주요 하도구간별 홍수도달 시간의 예측)

  • 윤용남;박무종
    • Water for future
    • /
    • v.25 no.3
    • /
    • pp.115-124
    • /
    • 1992
  • The peak flood discharge at a downstream station and the flood travel time between a pair of dams due to a specific flood release from the upper reservoir are computed using a hydraulic river channel routing method. The study covered the whole reservoir system in the Han River. The computed peak flood discharges and the travel times between dams were correlated with the duration and the magnitude of flood release rate at the upstream reservoir, and hence a multiple regression model is proposed for each river reach between a pair of dams. The peak flood discharge at a downstream location can be converted to the peak flood stage by rating curve. Hence, the proposed regression model could be used to forecast the peak flood stage at a downstream location and the flood travel time between dams using the information on the flood release rate and duration from the upper dam.

  • PDF

Analysis of Flow Duration Characteristics due to Environmental Change in Korea River Basin (우리나라 하천유역 환경변화가 유황특성에 미치는 영향 분석)

  • Lee, Jae-Joon;Kim, Young-Jun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • The purpose of this study is to evaluate the flow duration characteristics of Nakdong, Seomjin and Geum river due to environmental change. The water level gauging stations of Nakdong, Seomjin and Geum river were selected to analyze the change of flow duration. The construction period of multipurpose dam was considered to analyze flow duration characteristics. As the result of this study, it show that ninety-five day flow, normal flow, low flow and drought flow were increased by multipurpose dam construction at all stations except a Jukpo gauging station. Especially, improved effect of flow duration in downstream part was bigger than that in upstream and midstream part. The coefficients of river regime of Nakdong, Seomjin and Geum river were decreased and also coefficients of flow duration were decreased after the multipurpose dam construction. However decline of coefficient of flow duration was smaller than coefficient of river regime because coefficient of flow duration is less affected by maximum discharge and minimum discharge than coefficient of river regime, It was confirmed that multipurpose dam on upstream and midstream has a useful effect for improving the flow duration characteristics.

Evaluation of Eco-Hydrological Changes in the Geum River Considering Dam Operations : II. Hydraulic Fish Habitat Condition Analysis (댐 운영을 고려한 금강의 생태.수문학적 변화 평가 : II. 수리학적 어류서식처 조건 분석)

  • Park, Sang-Young;Kim, Jeong-Kon;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.5
    • /
    • pp.407-414
    • /
    • 2009
  • A quantitative analysis was conducted to study the impacts of artificial flow alteration on fish habitate condition change in the Geum River downstream the Daechung Multi-purpose Dam (DMD). River Analysis Package (RAP) was employed for the analysis and three fish species of black shiner, long nose barbel and Korean shinner were selected as icon species. The results of the analysis showed enhaced fish habitat conditions during low flow seasons in spring and fall after DMD construction, while the impact of the Youngdam Multipurpose Dam located upstream the DMD was insignificant. This result could be attributed to the fact that the increased flow during dry seasons helped create preferable habitat conditions for the fish species tested in this study.

Characteristics of Fish Community Structure before the Dam Operation in the Naeseong Stream, Korea (내성천에서 영주댐 운영전 어류 군집구조의 특성)

  • Won, Jong-Seo;Kim, Seog Hyun;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.1
    • /
    • pp.34-43
    • /
    • 2017
  • The Naeseong Stream as a tributary of Nakdong River has conserved the unique structure and function of a typical sand-bed stream ecosystem. However, it is expected to change the stream bed environments and then the fish fauna in the downstream of the dam after the operation of the Yeongju Dam from 2016. We collected fishes and investigated their habitat environments from 2014 to 2016 in the downstream of the Yeongju Dam under construction in order to monitor changes in habitat environment, fauna and community structure of fishes in the Naeseong Stream. The size of the bed materials increased immediately downstream of the Yeongju Dam under construction. Before the operation of the Yeongju Dam, Zacco platypus was dominated and Opsarichthys uncirostris amurensis, Coreoleuciscus splendidus, Hemibarbus longirostris and Pseudogobio esocinus were sub-dominated according to the different sampling sites. Hemibarbus labeo, H. longirostris, Pseudogobio esocinus, Gobiobotia nakdongensis, Cobitis hankugensis and Leiocassis ussuriensis were found as a psammophilous fish specific to sand stream in the Naeseong Stream. At the downstream of the dam, the fish community was classified into a group of gravel-bed fishes such as Microphysogobio yaluensis, Coreoleuciscus splendidus and Coreoperca herzi and a group of sand-bed fishes such as Hemibarbus labeo, Cobitis hankugensis and Gobiobotia nakdongensis. These fish communities gradually tended to change from sand-bed fish community to gravel-bed fish community during the construction of the Yeongju Dam. Therefore, it is necessary to collect the baseline data for the stream ecosystem conservation in the sandy stream by continuously monitoring changes in the environment and fish in the downstream of the Youngju Dam.