• Title/Summary/Keyword: River downstream of dam

Search Result 254, Processing Time 0.026 seconds

Assessment of Flood Impact on Downstream of Reservoir Group at Hwangryong River Watershed (황룡강 유역 저수지군 하류하천 영향평가)

  • Hwang, Soon-Ho;Kang, Moon-Seong;Kim, Ji-Hye;Song, Jung-Hun;Jun, Sang-Min;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.103-111
    • /
    • 2012
  • Works for dam heightening plan have dual purposes: flood disaster prevention by securing additional storage volume and river ecosystem conservation by supplying stream maintenance flow. Now, the dam heightening project is in progress and there are 93 dam heightened reservoir. After the dam heightening project, 2.2 hundred million ton of flood control volume in reservoirs will be secured. Thus it is necessary to evaluate the effects of the dam heightening project on watershed hydrology and stream hydraulics, and resulting flood damages. This study was aimed to assess the impact of outflow from the dam heightened reservoir group on the Whangryong river design flood. The HEC-HMS (Hydrologic Engineering Center-Hydrologic Modeling System) model was used for estimating flood discharge, while HEC-5 (Hydrologic Engineering Center-5) was used for reservoir routing. This study analysed flood reduction effect on 100yr and 200yr return periods about the before and after heightening of agricultural dams. Based on the results of this study, the reduction of flood peak discharge at downstream of the reservoir group was estimated to be about 41% and 53% for 100yr and 200yr frequencies, respectively.

Economic Analysis of Dam Operation Improvement by Dam Downstream River Improvement Works ( I )-Recovered Benefits of Water Supply and Hydropower Generation (댐하류하천정비사업의 댐 운영개선 효과 경제성 분석 (I) -용수공급 및 발전생산 회복편익)

  • Lee, Gwang-Man;Lee, Eul-Rae;Yoo, Seung-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.9
    • /
    • pp.753-763
    • /
    • 2011
  • Allocated water storage of dam at the planning and design stage does not seem to be maintained well at the operation stage because of unexpected critical reasons. A dam is likely to be subject to negative effects caused by changes of dam operation conditions and it is hardly avoidable. Therefore, it must be timely improved to recover its original functions and looked for better alternatives to keep its original roles. Specifically the improper management of river condition degrades flood control capability in a dam and river eco-system. The dam downstream river improvement work is needed for normalizing dam functions and its valuations. This study focuses on estimating water use benefits from recovering its own effective storage buffer restricted for flood control. As the results, the water supply and the hydropower benefits in Imha, Daechung and Youngdam Dam are recovered totally by 19.9 million $m^3$/year and 20.8 GWh/year respectively. Also those results are used for the basic information of the economic analysis in the dam downstream river improvement work.

Numerical Simulation of Sand Bars downstream of Andong Dam (안동댐 하류 하천에서 사주의 재현 모의)

  • Jang, Chang-Lae;Shimizu, Yasuyuki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.379-388
    • /
    • 2010
  • This study examined the physical effects on the river changes downstream of Andong dam and simulated the reproduction of sand bars and the geomorphic changes numerically. The river bed downstream of Aandong dam and Imha dam was decreased and the mean diameter of bed materials was increased, and the number of lower channels was increased. The vegetated area was slightly increased after Andong dam construction. Moreover, the area was abruptly increased after Imha dam construction. The bankfull discharges was estimated to 580 $m^3/s$ after the dams construction and 2,857 $m^3/s$ before the dams. A flood mitigation safety by the dams construction considering return period was increased to 5 to 10 times. As a result of meso-scale regime analysis by using banfull discharge, the regime between single bars and multiple row bars before the dams construction was changed to completely the regime of multiple row bars after the dams. The numerical simulation results showed that the sand bars and lower channels were developed before the dams, and braided river was developed after the dams. This meant that the patterns of sand bars was changed by variable discharge due to the dams construction.

Runoff Estimation of Imjin River Basin through April 5th Dam and Hwanggang Dam Construction of North Korea (북한의 4월5일댐과 황강댐 건설에 따른 임진강 유역의 유출량 평가)

  • Kim, Dong-Phil;Kim, Kyoung-Ho;Kim, Joo-Hun
    • Journal of Environmental Science International
    • /
    • v.20 no.12
    • /
    • pp.1635-1646
    • /
    • 2011
  • This April 5th dam and Hwanggang dam, which are located in Imjin river, North Korea, become the main causes of water shortages and damages in Imjin river downstream. April 5th dam is assumed a small or medium-sized dam, its total storage volume reaches about 88 million $m^3$. And Hwanggang dam, multi-purposed dam of total storage volume approximately 0.3 billion $m^3$ to 0.4 billion $m^3$ is used as source of residental or industrial water in Gaeseong Industrial Complex. North Korea, which has April 5th dam and Hwanggang dam in Imjin river, manages water of approximately 0.39 billion $m^3$ to 0.49 billion $m^3$ directly. As water is storaged or discharged through dam, it causes a severe damage to areas in Yeoncheon-gun and Paju city, South Korea. Therefore, this study intends to analyze and estimate runoff through dam construction by using hydrological observation data and artificial data such as service water supply and agricultural water in Imjin river, water shortage and damage correctly.

Two - Dimensional analysis in Dam Downstream due Spill Condition (방류조건에 따른 댐 하류부의 2차원 수치해석)

  • Lee, Jong-Hyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.911-918
    • /
    • 2013
  • Two - dimensional numerical analysis model(RMA2), is mainly applied to analyze the flood water levels, velocities and change of river bed at the downstream of Dam. The analysis result be able to influence to Gwangchon bridge from Juam dam, freeboard be insufficient 0.7m to left bank 300m section of dam downstream. Bank overflow is appear to all section of Bosung river to PMF spill condition. Inundated district is appear to river confluence to 200year frequency and is expand to bank overflow to PMF spill condition. Velocity in the channel was simulated high velocity to the bridge and narrow reach and appear to riverbed degradation.

A Study on Instream Flow for Water Quality Improvement in Lower Watershed of Nam River Dam (남강댐 하류유역 수질개선 필요유량 산정에 관한 연구)

  • Kim, Gyeong-Hoon;Jung, Kang-Young;Lee, In-Jung;Lee, Kyung-Lak;Cheon, Se-Uk;Im, Tae-Hyo;Yoon, Jong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.44-59
    • /
    • 2014
  • Despite the implementation of TMDL, the water quality in lower watershed of Nam river dam has worsened continuously since 2005. Multifarious pollution sources such as cities and industrial districts are scattered around it. Nam river downstream bed slope is very gentle towards the downstream water flow of slows it down even more, depending on the water quality deterioration is accelerated eutrophication occurs. In this study, the mainstream in lower watershed of Nam river dam region to target aquatic organic matter by phytoplankton growth contribution was evaluated by statistical analysis. and statistical evaluation of water quality and the accuracy of forecasting, model calibration and verification procedures by completing QUALKO2 it's eutrophic phenomena that occur frequently in the dam outflow through scenarios predict an increase in water quality management plans to present the best should.

Prediction of River Profile Changes Downstream of the Daecheong Dam by Using the Computer Program HEC-6 (HEC-6를 이용한 대청댐 하류의 하상변동예측)

  • Yu, Kwon Kyu;Woo, Hyo Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.157-163
    • /
    • 1993
  • The present study focuses on simulating river profile changes downstream of the Daecheong multipurpose dam by using the computer program HEC-6, which was developed by the United States Army Corps of Engineers. The dam locates at the Keum river, a typical alluvial stream, whose bed material is composed mostly of fine and medium sands. The study reveals that after the completion of dam, a 15 km long reach downstream from the regulatory dam was severely degraded by about 2~3 m. No further severe degradation of this reach is expected, however, because the river-bed of this reach has been well armored since then with gravels and cobbles. Some places in the study reach were degraded locally by 2 m, due mainly to the large-scale gravel mining activities in that reach. On the other hand, a 20 km long reach in downstream study reach is aggraded more or less by 0.5~1 m. Calculation by the computer program HEC-6 is close to measurement for the study river reach. According to the results by HEC-6, the study river reach would remain generally stable in the future, except a few places in the mid-upstream where further river-bed degradation of 1~2 m would occur and a few places in the far downstream where local river-bed aggradations of about 0.5 m would occur.

  • PDF

Impact of a Flushing Discharge from an Upstream Dam on the NH3-N Concentrations during Winter Season in Geum River (상류 댐 플러싱 방류가 금강의 겨울철 암모니아성 질소 농도 저감에 미치는 효과분석)

  • Chung, Se Woong;Kim, Yu-kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.609-616
    • /
    • 2005
  • A high ammonia nitrogen ($NH_3-N$) concentration has been recursively observed every winter season in Geum River, which hindered chemical treatment processes at a water treatment plant. A flushing discharge from Daecheong Dam was often considered to dilute $NH_3-N$, but information on the quantitative effect of flushing on the downstream water quality was limited. In this study, the impact of a short-term reservoir flushing on the downstream water quality was investigated through field experiments and unsteady water quality modeling. On November 22, 2003, the reservoir discharge was increased from $30m^3/sec$ to $200m^3/sec$ within 6 hours for the purpose of the experiment. The results showed that flushing flow tends to reduce downstream $NH_3-N$ concentrations considerably, but the effectiveness was limited by flushing amount and time. An unsteady river water quality model was applied to simulate the changes of nitrogen concentrations in response to reservoir flushing. The model showed very good performance in predicting the travel time of flushing flow and the effect of flushing discharge on the reduction of downstream $NH_3-N$ concentrations at Maepo and Geumnam site, but a significant discrepancy was observed at Gongju site.

Effects of Sand Supply and Artificial Floods on Periphyton in the Downstream of a Dam (Yangyang Dam, Korea) (모래 공급과 인공 홍수가 양양댐 하류하천의 부착조류에 미치는 영향)

  • Park, Misook;Lee, Jaeyong;Jung, Sungmin;Park, Chang-Keun;Chang, Kun;Kim, Bomchul
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.418-425
    • /
    • 2012
  • Dam construction in a river can change its hydrological pattern and trap sediments, which results in ecological changes in the downstream. It is a common phenomenon in the downstream of dams to have decreased sediment flow and increased periphyton. Artificial floods and sediment application are suggested as mitigation practices in order to simulate natural process of flood; transporting sediment and sloughing periphyton off. In this study the effects of artificial floods on periphyton were examined by applying sand artificially and discharging water from a dam (Yangyang Dam, Korea). The study area has been suffering from turbidity problems caused by shore erosion of the dam. The accumulation of inorganic sediments and increase of periphyton on the river bottom are the major factors of habitat deterioration in the downstream reaches. Artificial flood and artificial addition of sand was performed in summer and the effects were measured. Piles of applied sands were washed off easily by discharge and it enhanced the periphyton sloughing effect. The removal efficiency of periphyton was 50 ~ 80% within the 2 km reach from the dam. In conclusion artificial floods and sand application can be a good mitigation measure for the habitat rehabilitation after a dam construction in streams.

A Flood Routing for the Downstream of the Kum River Basin due to the Teachong Dam Discharge (대청댐 방류에 따른 금강 하류부의 홍수추적)

  • Park, Bong-Jin;Gang, Gwon-Su;Jeong, Gwan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.2
    • /
    • pp.131-141
    • /
    • 1997
  • In this study, the Storage Function Method and Loopnet Model (Unsteady flow analysis model) were used to construct the flood prediction system which can predict the effects of the water release in the downstream region of Teachong Dam. The regional frequency analysis (L-moment) was applied to compute frequency-based precipitation, and the flood prediction system was also used for flood routing of the down stream region of Teachong Dam in the Kum River Basin to calculate frequency based flood. The magnitude of flood, water level, discharge, and travel time to the major points of the downstream region of Teachong Dam, which can be used as an imdex of flood control management of Teachong Dam, were calculated.

  • PDF