• Title/Summary/Keyword: River cross-section

Search Result 139, Processing Time 0.023 seconds

Establishment of Equi-Distance River Cross Section and Finite Element Mesh Using ArcView and Observed Cross Section (ArcView와 실측단면을 이용한 등간격 하도단면 및 유한요소망 구축)

  • Choi, Seung-Yong;Han, Kun-Yeun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.4
    • /
    • pp.95-112
    • /
    • 2009
  • The river cross section in the input/output data which are needed in the area of river flow analysis is very important factor. The bottom elevation of actual river cross section has to be correctly reflected to obtain correct results when two dimensional flow analysis is conducted for natural river. But to reflect virtually the bottom elevation of river cross section is impossible. The objective of this study is to suggest a method for creating equi-distance river cross section by using both HEC section and ArcView and constructing the finite element mesh. The main channels of Han and Nakdong river were selected and equi-distance river cross sections constructed in this study have shown good agreement with the observed river cross sections. In addition, high quality finite element meshes can be applied to many areas of study such as finite element analysis for water quality and two dimensional flow analysis using the suggested method for equi-distance river cross sections in this study.

  • PDF

Estimating Ungauged River Section for Flood Stage Analysis (홍수위 해석을 위한 미측정 하천 단면 추정)

  • Shin, Sat Byeol;Kang, Moon Seong;Jun, Sang Min;Song, Jung Hun;Kim, Kyeung;Ryu, Jeong Hoon;Park, Jihoon;Lee, Do Gil;Lee, Kyeong-Do
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.11-18
    • /
    • 2016
  • The objective of this study was to develop the simple method to estimate ungauged river section for flood stage analysis. Damage prediction should be prioritized using hydrological modeling to reduce flood risk. Mostly, the geographical data using hydrological modeling depends on national river cross-section survey. However because of the lack of measured data, it is difficult to apply to many local streams or small watersheds. For this reason, this study suggest the method to estimate unguaged river cross-section. Simple regression equations were derived and used to estimate river cross-section by analyzing the correlation between the river cross-sectional characteristics (width, height and area). The estimated cross-sections were used to simulate flood level by HEC-RAS (Hydrologic Engineering Center's River Analysis System). The applicability of this method was verified by comparing simulated flood level between measured and estimated cross-section. The water surface elevation of the flood stage analysis was 6.56-7.24 m, 5.33-5.95 m and 6.12-6.75 m for measured cross section, for estimated cross section and for estimated cross section based on DEM elevation, respectively. Further study should consider other factors for more accurate flood stage analysis. This study might be used one of the guidelines to estimate ungauged river section for flood stage analysis.

Generating Random Cross-Section of River Channel using Bilinear Interpolation Method (Bilinear 보간법에 의한 임의 하천단면 생성에 관한 연구)

  • Choi, Nei-In;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.3
    • /
    • pp.105-110
    • /
    • 2008
  • The cross-section data are generally used for hydraulic and hydrologic modeling. However, when the detailed data of river channel are required, it is not available to use because of too wide distance of the offset between cross-sections. Also, the actual form of river channel cannot be reflected with the general interpolation methods which is considering straight line between acquired points. The aim of this paper is to present an algorithm which is to interpolate point using bilinear method and to estimate random cross-section between two surveyed cross-section data. And it is supposed that the proposed algorithm can be able to offer available data for hydraulic and hydrologic modeling.

  • PDF

Influence Analysis for Natural River Bed with Dam Construction (댐 건설이 하류하천 하상에 미치는 영향 분석)

  • Choo, Tai Ho;Chae, Soo Kwon
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.715-723
    • /
    • 2012
  • The Hoelyongpo in the Naeseong River as tributary basin of the Nakdong River is broadly well-known a tourist attraction, which is made of sandy beach, and is called "Island of Inland". But Construction of the Dam was planned at upstream of river. In other words, an influx of sediment is blocked from upstream of river. In this situation, through sediment discharge coming from tributary of the Naeseong river, the whether to go ahead of sand beach of the Hoelyongpo is analyzed by using 1-D and 2-D model. The sediment discharge is estimated through ratio raw with basin area, and the instream flow requirement of river coming from dam and the flow rate and sediment coming from tributary are inputted for model. The 1-D model uses HEC-6 and the 2-D model uses SMS(RMA2 and SED2D). The analysis using the HEC-6 is performed from cross section data 10 year ago to the present cross section. Consequently, Yang equation presenting similar result to the present cross section data is determined, using this, the prediction is conducted for the cross section after 20 years. The 2-D analysis is conducted for the present cross section data. The value of distinction between a deposition and erosion with the results presented in the 1, 2-D models is occur, however, the appearance between the deposition and the erosion is similar.

Estimation of river water depth using UAV-assisted RGB imagery and multiple linear regression analysis (무인기 지원 RGB 영상과 다중선형회귀분석을 이용한 하천 수심 추정)

  • Moon, Hyeon-Tae;Lee, Jung-Hwan;Yuk, Ji-Moon;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1059-1070
    • /
    • 2020
  • River cross-section measurement data is one of the most important input data in research related to hydraulic and hydrological modeling, such as flow calculation and flood forecasting warning methods for river management. However, the acquisition of accurate and continuous cross-section data of rivers leading to irregular geometric structure has significant limitations in terms of time and cost. In this regard, a primary objective of this study is to develop a methodology that is able to measure the spatial distribution of continuous river characteristics by minimizing the input of time, cost, and manpower. Therefore, in this study, we tried to examine the possibility and accuracy of continuous cross-section estimation by estimating the water depth for each cross-section through multiple linear regression analysis using RGB-based aerial images and actual data. As a result of comparing with the actual data, it was confirmed that the depth can be accurately estimated within about 2 m of water depth, which can capture spatially heterogeneous relationships, and this is expected to contribute to accurate and continuous river cross-section acquisition.

Establishment of GIS River Section for Water Flow Management (하천유량관리를 위한 GIS 하도단면 구축)

  • 최철관;김상호;배덕효;한건연
    • Spatial Information Research
    • /
    • v.8 no.1
    • /
    • pp.131-140
    • /
    • 2000
  • The systematic data management system in the area of river flow analysis has not yet constructed, even though the need is evident due to the complicated process of tremendous input/output data in the modeling study and the importance of visualization of spatial flow variation. The objectives of this study are to suggest the method for constructing the NGIS-based river database based on contour, river, elevation, boundary layers and river cross sections and to provide the algorithm for interpolating equi-distance river cross section points. The selected study area is the main Han River starting from Paldang dam site to Indogyo bridge. The constructed database will be useful for the scientific water flow management system in the study area.

  • PDF

Mechanism of Wetland Formation according to Interaction of River Bed Fluctuation and Plant Success in the Hangang River Estuary (한강하구에서 하도변화와 식물천이의 상호작용에 따른 습지형성 기작)

  • Lee, Samhee;Youn, Sukzun
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.320-330
    • /
    • 2022
  • The Hangang river estuary, which is a natural estuary without structures such as estuary barrage, is an ecological pathway connecting the sea and rivers. Accordingly, Hangang river estuary has various species, and there is very valuable. Sediment classification in Hangang river estuary is three-dimensionally and diversely is distributed. Sediment classification in Hangang river estuary is also sensitively changed according to various factors such as climate change and river development. It is typically cause to landform and to develop a compound cross section. In Janghang wetland, the plant success is remarkable according to the morphological change at river bed. The purpose of this study is to identify the mechanism of wetland formation based on the observation on-site. As a result of the observation, Janghang wetland where was artificially created, has been grown according to the river bed change based on the flow rate and the plant success. The viscous surface layer material(fine grains of wash rod properties), which is not the main material(sand) of the river bed, but sub-materials of river bed, jas been settled on the pioneer plants(bolboschoenus planiculmis, etc.). It is an important role in the growth of a compound cross section and a wetland. After the wetland developed to the compound cross section, it is observed that the pioneer plants are transferred to other plant species.

Generation of the Ortho-Rectified Photo Map and Analysis of the Three-Dimensional Image Using the PKNU 2 Imagery (PKNU2호 영상을 이용한 정사영상 지도 제작 및 3차원 입체 분석)

  • Lee, Chang Hun;Choi, Chul Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.77-87
    • /
    • 2004
  • It is important for hydrographers to extract the accurate cross section of a river for the hydrographical analysis of the topography. Aerial photographs were used to extract the cross section of a river for the advantages of the accuracy and economical efficiency in this study, while the direct measurement has been used in existing studies. An ortho-rectified photo map using imageries taken by the PKNU 2 (High-resolution, multi-spectral, aerial photographic system developed by our laboratory) was generated using the surveyed data and a digital map. The cross section of a river that was obtained from the ortho-rectified by the surveyed Kinematic data of GPS was compared with the result using ImageStation stereo-plotter of corp. Z/I Imaging. As a result of this study, the RMSE in the ortho-rect process using the surveyed GPS data was lowered as from 5.5788 pixels (about 2m) to 2.84 (about 1m) in comparison with it in the process using a digital map. The surveyed kinematic GPS in extraction of the cross section of a river was excellent as 6.6cm of the planimetric and precision in the confidence level of 95%. The correlation coefficient between the result from the using stereo-plotter and the extraction of cross section of a river using aerial photos was 0.8 hydrographical acquisition of it using PKNU 2 imagery will be possible.

  • PDF

The Analysis of Flood in an Ungauged Watershed using Remotely Sensed and Geospatial Datasets (II) - Focus on Estimation of Flood Inundation - (원격탐사와 공간정보를 활용한 미계측 유역 홍수범람 해석에 관한 연구(II) - 침수 피해면적 산정을 중심으로 -)

  • Son, Ahlong;Kim, Jongpil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.797-808
    • /
    • 2019
  • This study evaluated the applicability of spacebourne datasets to the flood analysis in an ungauged watershed where is no discharge measurements. The Duman River basin of North Korea was selected as a target area which was flooded by recent Typhoon Lionrock. Topographical parameters for flood analysis were estimated from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM). GDEM includes the shortcomings of information on river cross-section, and conducted 2 dimensional flood analysis when considering virtual river cross-section and not considering it. As a result of comparative analysis, an error occurs in the inundation area and depth, but when used carefully, it is considered that the satellite image can be used for creating flood hazard map and utilizing information for response and preparation.

One-dimensional Hydraulic Modeling of Open Channel Flow Using the Riemann Approximate Solver - Application for Natural River (Riemann 해법을 이용한 1차원 개수로 수리해석 - 자연하도 적용)

  • Kim, Ji-Sung;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.4
    • /
    • pp.271-279
    • /
    • 2009
  • The objective of this study is to develop the scheme to apply one-dimensional finite volume method (FVM) to natural river with complex geometry. In the previous study, FVM using the Riemann approximate solver was performed successfully in the various cases of dam-break, flood propagation, etc. with simple and rectangular cross-sections. We introduced the transform the natural into equivalent rectangular cross-sections. As a result of this way, the momentum equation was modified. The accuracy and applicability of newly developed scheme are demonstrated by means of a test example with exact solution, which uses triangular cross-sections. Secondly, this model is applied to natural river with irregular cross-sections and non-uniform lengths between cross-sections. The results shows that the aspect of flood propagation, location and height of hydraulic jump, and numerical solutions of maximum water level are in good agreement with the measured data. Using the developed scheme in this study, existing numerical schemes conducted in simple cross-sections can be directly applied to natural river without complicated numerical treatment.