• 제목/요약/키워드: River bank

검색결과 274건 처리시간 0.021초

호안용 돌망태 매트리스의 수리학적 특성 연구 (A Study on the Hydraulic Characteristics for River Bank Protection using Gabion Mattress)

  • 배상수;이경욱;허창환;지홍기
    • 한국농공학회지
    • /
    • 제44권2호
    • /
    • pp.81-98
    • /
    • 2002
  • The condition of initial movement far the river bank protection using rip rap is a limit condition beyond which the lining is progressively destroyed as the separate elements are removed by the flow. In the case of the river bank protection using gabion mattress, however, after the initial movement the containment offered by the mesh remains. A new situation of equilibrium with a deformed river bank protection using gabion mattress is obtained, allowing it to withstand more severe conditions without compromising the resistance and without further deformation. Shield's coefficient for the river bank protection using gabion mattress is twice the value of that fur river bank protection using rip rap. This means that with the same hydraulic behavior conditions, the average dimension of the rocks to be used in the river bank protection using gabion mattress is half that of river bank protection using rip rap rock. When the same size rocks are used the allowable velocity for the river bank protection using gabion mattress is more than twice, even as much as 3 or 4 times that for river bank protection using rip rap.

낙동강 하류 갈전지역에서의 강변여과수 수질평가 (Evaluation of Bank Filtrate Water Quality in Galjon, the Downstream of the Nakdong River)

  • 이수영;정태학
    • 상하수도학회지
    • /
    • 제17권4호
    • /
    • pp.487-494
    • /
    • 2003
  • In this research, water qualities of river water and bank-filtrate were compared for six months including winter season. The location studied was Galjon area, the downstream of the Nakdong river. The well for bank-filtrate was installed 40 m apart from riverside. Main analytic results of bank-filtrate and river water were summarized as followings; the average concentrations in bank-filtrate were turbidity 0.8NTU, TN 0.4mg/l, $BOD_5$, 0.1mg/l, $KMnO_4$ consumption 1.6mg/l, heterotrophic bacteria 350cfu/ml, Fe 0.5mg/l, Mn 0.99mg/l while the average concentrations in river water were turbidity 6.1NTU, TN 3.9mg/l, $BOD_5$, 3.6mg/l, $KMnO_4$ consumption 11mg/l, heterotrophic bacteria 1,640cfu/ml, Fe 0.28mg/l, Mn 0.04mg/l. Water quality of bank-filtrate was mostly shown a good results than it of river water excepting Fe and Mn. In even basic constituents such as water temperature and pH, bank-filtrate was very settled while river water was extraordinary changable and high. In case of nitrogen, especially, total nitrogen of river water was 3.9mg/l while it of bank-filtrate was 0.4mg/l and its reduction was very high. The reason is that $NH^+_4-N$ among total nitrogen in the river water is nitrified and then denitrified in soil layer when it is pumped up as bank-filtrate. But Fe and Mn caused by the characteristics of soil was very high in bank-filtrate while Mn in river water was particularly very low and settled. As the distance between riverside and well was longer, concentration of Fe and Mn may be went up while its bacteria may be reduced.

하천제방의 누수탐사 및 누수량 평가에 관한 연구 (A Stud on the Estimation of Leakage and the probing Leakage in the River Bank)

  • 김경수;조기태
    • 대한지하수환경학회지
    • /
    • 제6권4호
    • /
    • pp.213-217
    • /
    • 1999
  • 하천제방은 하천 수리 구조물 중 가장 중요한 구조물중의 하나이다. 하천제방의 붕괴는 재해발생의 직접적인 원인이 되기 때문에 하천제방의 내구성. 안정성은 중요한 요소이다. 제방붕괴의 원인은 홍수범람과 제방 누수를 둘 수 있다. 본 연구는 전기 비저항 탐사를 이용하여 제방누수를 탐사하고. 또 제방의 누수가 발생하였을 경우 weighted residual method를 이용하여 제방 누수량을 평가하였다. 본 연구의 대상유역은 섬진강 상류유역이며. 대상제방의 제원은 길이 300 m. 소단 2.0 m. 제방 폭 4.5 m. 높이 4 m 이다. 본 연구에서는 대상제방에서 전기 비저항 탐사를 이용하여 제방의 누수여부를 평가하였다. 그리고 누수가 발생하는 지점에서 weighted residual method를 이용하여 제방 누수량을 평가하였다. 그 결과 해당제방의 누수는 39~45 m. 80~90 m, 218~222 m. 214~250 m 지점에서 발생하였으며, 누수형상은 직사각형 및 다각형 등의 형상을 보였다. 그리고 이들 누수지점에서 누수량은 2.7$\times$$10^{-3}$ $\textrm{m}^3$/sec로 평가되었다.

  • PDF

낙동강유역 침수범람에 따른 홍수터관리 방안 연구 (A Study on the Floodplain Management Plan due to Inundation of Nakdong River Basin)

  • 서규우
    • 한국습지학회지
    • /
    • 제4권2호
    • /
    • pp.57-66
    • /
    • 2002
  • The local storm occurred Nakdong river basin from August 4 to 11 of the year 2002, resulting in a record 500-600mm rainfall. The heavy rain continued for more than 10 days and especially between 3 to 4 am of August 9, 50mm per hour local storm occurred in Hanrim-myun area, Kimhae. 8 days after the storm, the water level of Nakdong river rose rapidly and the river flowed backward the branches. T he draining of the protected low wetland was unable and the water level of the inner bank area rose suddenly, causing the inundation in several areas. Baeksan bank of Nam river, Gahyun(Samhak) bank of Hwang river, and Kwangam bank of Shinban river, where the draining facilities were under construction or constructed recently, were failed by the piping around the draining culvert. This study analyze the cause of the damage in Nakdong river banks and suggests the countermeasures for future improvement. The damaged spot of the river bank was surveyed, and the rainfall and the fluctuation in the water levels were reviewed. Finally for the flood inundation prevention at the inner bank area, new floodplain management plan as the protect of low wetland established.

  • PDF

Potential of River Bottom and Bank Erosion for River Restoration after Dam Slit in the Mountain Stream

  • Kang, Ji-Hyun;So, Kazama
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.46-46
    • /
    • 2011
  • Severe sediment erosion during floods occur disaster and economic losses, but general sediment erosion is basic mechanism to move sediment from upstream to downstream river. In addition, it is important process to change river form. Check dam, which is constructed in mountain stream, play a vital role such as control of sudden debris flow, but it has negative aspects to river ecosystem. Now a day, check dam of open type is an alternative plan to recover river biological diversity and ecosystem through sediment transport while maintaining the function of disaster control. The purpose of this paper is to verify sediment erosion progress of river bottom and bank as first step for river restoration after dam slit by cross-sectional shear stress and critical shear stress. Study area is upstream reach of slit check dam in mountain stream, named Wasada, in Japan. The check dam was slit with two passages in August, 2010. The transects were surveyed for four upstream cross-sections, 7.4 m, 34 m, 86 m, and 150 m distance from dam in October 2010. Sediment size was surveyed at river bottom and bank. Sediment of cobble size was found at the wetted bottom, and small size particles of sand to medium gravel composed river bank. Discharge was $2.5\;m^3/s$ and bottom slope was 0.027 m/m. Excess shear stress (${\tau}_{ex}$) was calculated for hydraulic erosion by subtracting the values of critical shear stress (${\tau}_{c}$) from the value of shear stress (${\tau}$) at river bottom and bank (${\tau}_{ex}=\tau-{\tau}_c$). Shear stress of river bottom (${\tau}_{bottom}$) was calculated using the cross-sectional shear stress, and bank shear stress (${\tau}_{bank}$) was calculated from the method of Flintham and Carling (1988). $${\tau}_{bank}={\tau}^*SF_{bank}((B+P_{bed})/(2^*P_{bank}))$$ where $SF_{bank}=1.77(P_{bed}/p_{bank}+1.5)^{-1.4}$, B is the water surface width, $P_{bed}$ and $P_{bank}$ are wetted parameter of the bed and bank. Estimated values for ${\tau}_{bottom}$ for a flow of $2.5\;m^3/s$ were lower as 25.0 (7.5 m cross-section), 25.7 (34 m), 21.3 (86 m) and 19.8 (150 m), in N/$m^2$, than critical shear stress (${\tau}_c=62.1\;N/m^2$) with cobble of 64 mm. The values were insufficient to erode cobble sediment. In contrast, even if the values of ${\tau}_{bank}$ were lower than the values for ${\tau}_{bottom}$ as 18.7 (7.5 m), 19.3 (34 m), 16.1 (86 m) and 14.7 (150 m), in N/$m^2$, excess shear stresses were calculated at the three cross-sections of 7.5 m, 34 m, and 86 m distances compare with ${\tau}_c$ is 15.5 N/$m^2$ of 16mm gravel. Bank shear stresses were sufficient for erosion of the medium gravel to sand. Therefore there is potential to erode lateral bank than downward erosion in a flow of $2.5\;m^3/s$. Undercutting of the wetted bank can causes bank scour or collapse, therefore this channel has potential to become wider at the same time. This research is about a potential of sediment erosion, and the result could not verify with real data. Therefore it need next step for verification. In addition an erosion mechanism for river restoration is not simple because discharge distribution is variable by snow-melting or rainy season, and a function for disaster control will recover by big precipitation event. Therefore it needs to consider the relationship between continuous discharge change and sediment erosion.

  • PDF

토양특성에 따른 강변여과수의 수질에 관한 연구 (Study on the Water Quality of Bank Filtration Depending on Soil Characteristics)

  • 나현영;권대영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권6호
    • /
    • pp.19-26
    • /
    • 2011
  • In this research, soil analysis and adsorption were conducted, and compared with the water quality of bank filtration and river in terms of TS, TDS, SS, $NH_4$-N, $NO_3$-N, $NO_2$-N, Fe, Mn, BOD and $KMnO_4$ consumption for the development of bank filtration in Gimhae city. Analysis of soil showed high levels of Fe (470 mg/kg), Mn (80 mg/kg) and $NH_4$-N (15 mg/kg). Also, adsorption coefficient values (k and 1/n) were 0.00159 and 0.8714, respectively. This implies that the adsorption of the soil depends on organic matter. Water qualitiy of the river and the bank filtration revealed that the concentrations of TS and TDS almost didn't change but the concentration of SS decreased 84% through the bank filtration. $NH_4$-N in the bank filtration was detected more than 1 mg/L which might be due to agricultural activities in the research area. $NO_3$-N was close to the detection limit owing to the removal by the adsorption. $KMnO_4$ consumption and BOD of the river were decreased by the bank filtration 250% and 350%, respectively, while Fe and Mn were significantly increased by the bank filtration.

강변여과 취수정의 간섭효과와 하천수 비율에 대한 해석적 평가 (Analytical Evaluation of Interference and Ratio of River Water at Riverbank Filtration Pumping Wells)

  • 박남식
    • 한국수자원학회논문집
    • /
    • 제47권8호
    • /
    • pp.685-691
    • /
    • 2014
  • 강변여과는 하천 인근에 다수의 관정을 설치하여 하천수의 수질 개선을 추구하는 기술이다. 그런데 다수의 관정이 인접해 있는 경우 관정간의 상호간섭 현상으로 인하여 취수량에 영향을 미친다. 강변 여과 관정의 경우에는 관정이 관망으로 연결되기 때문에 간섭효과의 요인에는 지하수위 강하량 외에도 유량변화에 따른 관망 수두손실이 포함된다. 간섭효과는 취수정으로 유입되는 하천수와 배후 지하수의 비율에도 영향을 미친다. 본 연구에서는 강변여과시스템의 대수층과 관망흐름을 통합해석하는 기법을 이용하여 복수 관정의 간섭효과와 하천수 비율을 산정하는 방법을 제시하고 실제에 가까운 가상의 강변여과시스템에 적용하였다. 관정 가동 패턴에 따라 취수량은 5% 이상 차이가나고 배후지하수 유입비율도 30~40% 범위로 10% 이상 차이가 날 수 있는 것으로 나타났다.

Mechanism for Bank Erosion and Local Scouring in Estuary of the Hangang River

  • Lee, Samhee;Han, Hyeongjun;Choo, Jeongho
    • 한국습지학회지
    • /
    • 제16권4호
    • /
    • pp.453-462
    • /
    • 2014
  • The levee and bridge pier in estuary of the Hangang River are exposed in a dangerous condition due to bank erosion and local scouring occurred since the summer season in 2011. At first, it is presumed that the high sandbar formed in river channel of the study area was an important element in the occurrence of bank erosion and local scouring. It can be presumed that the record-breaking depth of freezing due to cold wave for the long term during the winter season between 2010 and 2011 as well as the heavy intensive rainfall of 2011 had a decisive effect on the first damage of A section. The second damage of B section mainly occurred around the bridge pier constructed on the high water channel before it was washed away during the winter season between 2011 and 2012. It is considered that the second damage was caused by ice formation and ice floes.

점착성 제방사면의 구간별 소류력 산정식 제안 및 적용 (A Suggestion of Formulae to Calculate Sectional Tractive Force on the Slope of Cohesive River Bank and its Application)

  • 한만신;최계운
    • 한국수자원학회논문집
    • /
    • 제45권6호
    • /
    • pp.583-596
    • /
    • 2012
  • 호안은 제방을 보호하기 위하여 제방법면에 설치되는 구조물로써, 국내 외 설계기준에 의하여 호안을 설계할 때, 하상과 호안법면에서의 최대 소류력을 산정하여 제방 사면에 평균적인 개념으로 적용하고 있다. 제방 사면의 허용소류력을 산정하는 경우에는 비점착성 토사를 기준으로 사면의 흘러내림을 고려하지만, 본 연구에서는 0 < ${\Phi}$ < $90^{\circ}$ 의 경사를 갖는 점착성 제방 단면의 구간별 소류력 공식을 제안하였으며, 호안의 식생밀도와 공법 재료 변화에 따른 허용소류력을 산정하였다. 구간별 소류력을 산정하기 위하여 길이 20m, 폭 2m의 개수로를 설치하였고, 유량 조건을 변화하면서 수리모형실험을 수행하였다. 제방 사면의 구간별 허용소류력을 산정한 결과 호안 재료 변화에 따라서는 조도가 큰 공법의 허용소류력이 가장 크게 산정되었으며, 식생밀도에 의한 영향으로는 식생이 있는 경우 저항에 의하여 허용소류력이 증가되었지만, 밀도변화에 의하여는 큰 차이가 나타나지 않았다.

초강천의 퇴적물 분석을 이용한 총인 및 질소의 유달 특성 평가 (Evaluation of Phosphorus and Nitrogen Delivery Characteristics of Chogang Stream Sediments)

  • 강선홍;서동일
    • 상하수도학회지
    • /
    • 제11권4호
    • /
    • pp.99-109
    • /
    • 1997
  • To estimate the nutrients delivery characteristics of Chogang stream to Keum River, sediment and soil characteristics were analyzed in the stream and in the stream bank. Along the stream, soil samples from river sediment were collected and tested monthly for phosphorus and nitrogen concentrations. Nitrogen concentration in the sediment is much lower than that of soil in the river bank especially in summer presumably due to the high desorption characteristics of nitrogen by the increasing rainfall energy during summer. Instead, the concentrations of phosphorus were similar for the sediment and the soil in the river bank due to the strong adsorption characteristics of phosphorus. Batch tests were performed to evaluate the desorption potential of the sediments. Universal Soil Loss Equation (USLE) was applied to quantify soil erosion in each watershed due to rainfall. It was estimated that approximately 25% of total phosphorus by mass basis could be released from the sediment if the water was disturbed vigorously. The mass load of nitrogen and phosphorus into the Chogang Stream from the watershed were evaluated from the USLE and release ratio of phosphorus.

  • PDF