• Title/Summary/Keyword: River Network

검색결과 452건 처리시간 0.038초

Flood Risk Management for Weirs: Integrated Application of Artificial Intelligence and RESCON Modelling for Maintaining Reservoir Safety

  • Idrees, Muhammad Bilal;Kim, Dongwook;Lee, Jin-Young;Kim, Tae-Woong
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.167-167
    • /
    • 2020
  • Annual sediment deposition in reservoirs behind weirs poses flood risk, while its accurate prediction remains a challenge. Sediment management by hydraulic flushing is an effective method to maintain reservoir storage. In this study, an integrated approach to predict sediment inflow and sediment flushing simulation in reservoirs is presented. The annual sediment inflow prediction was carried out with Artificial Neural Networks (ANN) modelling. RESCON model was applied for quantification of sediment flushing feasibility criteria. The integrated approach was applied on Sangju Weir and also on estuary of Nakdong River (NREB). The mean annual sediment inflow predicted at Sangju Weir and NREB was 400,000 ㎥ and 170,000 ㎥, respectively. The sediment characteristics gathered were used to setup RESCON model and sediment balance ratio (SBR) and long term capacity ratio (LTCR) were used as flushing efficiency indicators. For Sangju Weir, the flushing discharge, Qf = 140 ㎥/s with a drawdown of 5 m, and flushing duration, Tf = 10 days was necessary for efficient flushing. At NREB site, the parameters for efficient flushing were Qf = 80 ㎥/s, Tf = 5 days, N = 1, Elf = 2.24 m. The hydraulic flushing was concluded feasible for sediment management at both Sangju Weir and NREB.

  • PDF

RNN-LSTM 알고리즘을 이용한 하천의 수질인자 예측 (Prediction of Water Quality Factor for River Basin using RNN-LSTM Algorithm)

  • 임희성;안현욱
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.219-219
    • /
    • 2020
  • 하천의 수질을 나타내는 환경지표 중 국가 TMS(Tele Monitoring system)의 수질측정망을 통해 관리되고 있는 지표로는 DO, BOD, COD, SS, TN, TP 등 여러 인자들이 있다. 이러한 수질인자는 하천의 자정작용에 있어 많은 영향을 나타내고 있다. 이를 활용한 경제적이고 합리적인 수질관리를 위해 하천의 자정작용을 활용하는 것이 중요하다. 생물학적 작용을 가장 효과적으로 활용하기 위해서는 수질오염 데이터에 기초한 수질예측을 채택하여 적절한 대책이 필요하다. 이를 위해서는 수질인자의 데이터를 측정하고 축적해 수질오염을 예측하는 것이 필수적인데, 실제적으로 수질인자의 일일 측정은 비용 관점에서 쉽게 접근할 수 없다. 본 연구에서는 시계열 학습으로 알려진 RNN-LSTM(Recurrent Neural Network-Long Term Memory) 알고리즘을 활용하여 기존에 측정된 수질인자의 데이터를 통해 시간당 및 일일 수질인자를 예측하려고 했다. 연구에 앞서, 기존에 시간단위로 측정된 수질인자 데이터의 이상 유무를 확인 후, 에러값은 제거하고 12시간 이하 데이터가 누락되었을 때는 선형 보간하여 데이터를 사용하고, 1일 데이터도 10일 이하 데이터가 누락되었을 때 선형 보간하여 데이터를 활용하여 수질인자를 예측하였다. 수질인자를 예측하기 위해 구글이 개발한 딥러닝 오픈소스 라이브러리인 텐서플로우를 활용하였고, 연구지역으로는 대한민국 부산에 위치한 온천천의 유역을 선정하였다. 수질인자 데이터 수집은 부산광역시에서 운영하는 보건환경정보 공개시스템의 자료를 활용하였다. 모델의 연구를 위해 하천의 수질인자, 기상자료 데이터를 입력자료로 활용하였다. 분석에서는 입력자료와, 반복횟수, 시계열의 길이 등을 조절해 수질 요인을 예측했고, 모델의 정확도도 분석하였다.

  • PDF

드론 연계 하천관리 운영플랫폼 개발 방향 (Development schemes of operating platform for river management linked with a Drone)

  • 성호제;이동섭
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.342-342
    • /
    • 2020
  • 최근 소형 무인비행장치(UAV; unmaned aerial vehicle)인 드론을 이용한 신산업 육성 및 지원에 관한 관심도가 높아지고 있다. 국외에서는 이미 드론을 이용한 농업관리와 물류배송, 공공부문 모니터링 등 다양한 산업 분야의 드론 이용을 적극 장려하고 있다. 드론 이용에 관한 관심도가 높아짐에 따라 국내외적으로 드론 응용 관련 기술 개발과 연구가 활발하게 진행되고 있지만, 국내에서는 환경모니터링과 시설물 점검 등 일부 제한적으로 활용되고 있다. 국내에서는 2024년까지 드론 응용서비스로 확장되는 산업 변화에 대응, DNA(Data, Network, AI) 기술을 접목한 새로운 개방형 플랫폼 구축을 목표로 기술개발 및 산업 육성을 촉진하고 있다. 이러한 국내 기술 개발 방향에 맞추어 드론과 첨단기술을 이용한 하천조사와 관련해 드론을 연계한 하천관리 플랫폼 개발의 필요성이 높아지고 있다. 본 연구에서는 드론 기반 하천조사 및 모니터링 수행을 위한 하천관리 운영플랫폼 개발을 목표로 국내외 요소기술을 분석하고 기술수준을 조사했다. 특히, 드론 기반 하천관리에 필요한 임무를 영역별로 분리해 요소기술 기반의 플랫폼 서비스를 정의하고 하천관리 부문 개방형 플랫폼 구축을 위한 시스템 구성 및 운영에 필요한 요소기술을 선정했다. 최종적으로 선정된 플랫폼 서비스와 요소기술을 기초로 시스템 적용방안을 검토하고 하천관리 운영플랫폼 구축을 위한 시스템 아키텍처를 정의 및 설계했다.

  • PDF

SWAT 모형을 이용한 메콩강 유역 격자형 강수 자료 강우-유출 성능 평가 (Evaluation of rainfall-runoff performance for gridded precipitation datasets in the Mekong River Basin Using SWAT Model)

  • 김영훈;정성호;하진경;이기하
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.194-194
    • /
    • 2022
  • 정확한 강우-유출 해석은 하천 홍수예경보, 댐 유입량 산정 및 방류량 결정 등 수자원 관리 및 계획수립에 있어 중요하며 밀도높은 관측망(raingauge network)으로 부터 수집된 강우 자료는 강우-유출 해석의 가장 중요한 기초 자료로 활용된다. 본 연구 대상 지역인 메콩강 유역은 국가공유하천(6개국: 중국, 라오스, 태국, 미얀마, 베트남, 캄보디아)은 기초 자료 수집이 어렵고, 구축된 자료의 양적, 질적 품질이 국가별로 상이하여 수문해석 결과의 불확실성을 높일 우려가 있다. 최근 원격탐사 기술의 발달로 격자형 글로벌 강수자료의 획득이 용이해졌으며, 이를 활용한 다양한 연구들이 수행된 바 있다. 이에 본 연구에서는 준 분포모형인 SWAT (Soil & Water Assessment Tool) 모형을 활용하여 격자형 위성 강수 자료(TRMM, GSMaP, PERSIANN-CDR)와 격자형 지점 강수 자료(APHRODITE, GPCC)의 메콩강 유역 강우-유출 모의에 대한 성능을 평가하였다. 유출량 산정을 위한 관측소로는 Luang Prabang, Pakse, Stung Treng, Prek Kdam 관측소를 선정하였으며 지점강수량 정보가 비교적 충분한 2000-2007년을 대상으로 매개변수 보정(2000-2003) 및 유출모의 검증(2004-2007)을 수행하였다. 격자형 강우를 이용한 유출분석 결과, APHRODITE, GPCC 및 TRMM이 다른 격자형 강수 자료(GSMaP, PERSIANN-CDR)보다 우수한 성능을 보였다.

  • PDF

Evaluation performance of machine learning in merging multiple satellite-based precipitation with gauge observation data

  • Nhuyen, Giang V.;Le, Xuan-hien;Jung, Sungho;Lee, Giha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.143-143
    • /
    • 2022
  • Precipitation plays an essential role in water resources management and disaster prevention. Therefore, the understanding related to spatiotemporal characteristics of rainfall is necessary. Nowadays, highly accurate precipitation is mainly obtained from gauge observation systems. However, the density of gauge stations is a sparse and uneven distribution in mountainous areas. With the proliferation of technology, satellite-based precipitation sources are becoming increasingly common and can provide rainfall information in regions with complex topography. Nevertheless, satellite-based data is that it still remains uncertain. To overcome the above limitation, this study aims to take the strengthens of machine learning to generate a new reanalysis of precipitation data by fusion of multiple satellite precipitation products (SPPs) with gauge observation data. Several machine learning algorithms (i.e., Random Forest, Support Vector Regression, and Artificial Neural Network) have been adopted. To investigate the robustness of the new reanalysis product, observed data were collected to evaluate the accuracy of the products through Kling-Gupta efficiency (KGE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI). As a result, the new precipitation generated through the machine learning model showed higher accuracy than original satellite rainfall products, and its spatiotemporal variability was better reflected than others. Thus, reanalysis of satellite precipitation product based on machine learning can be useful source input data for hydrological simulations in ungauged river basins.

  • PDF

Genetic Structure of the Jellyfish Rhopilema esculentum (Scyphozoa: Rhizostomatidae) in Korean Coastal Waters

  • Soo-Jung Chang;Jang-Seu Ki;Won-Duk Yoon;Ga-Eun Jun
    • Animal Systematics, Evolution and Diversity
    • /
    • 제39권4호
    • /
    • pp.264-271
    • /
    • 2023
  • The edible jellyfish Rhopilema esculentum occurs in waters throughout northeastern Asia, including in Korea, China, and Japan. In Korean waters, R. esculentum has appeared in two regions (Gangwha and Muan). Based on the appearance of young medusae and coastal distribution records, these two regions may be key R. esculentum breeding sites. In the present study, we investigate and compare the genetic structure of R. esculentum in the two regions using mitochondrial sequences (16S ribosomal RNA and cytochrome c oxidase subunit I). The genetic diversity of the R. esculentum population at Ganghwa exceeded that of the population at Muan. Despite considerable geographic separation (400 km) between the two regions(Gangwha and Muan), our haplotype network suggests that the Gangwha and Muan populations of R. esculentum are related. The simple and monotonous genetic structure of the Muan population shows that R. esculentum emergence is relatively recent. In contrast, the Gangwha population shows evolution. Moreover, jellyfish of the Gangwha population are genetically diverse and remain constant despite environmental fluctuations in the Han River. The Gangwha area is considered to be the old origin of R. esculentum in Korea.

시계열 자료의 예측을 위한 자료 기반 신경망 모델에 관한 연구: 한강대교 수위예측 적용 (A Study on the Data Driven Neural Network Model for the Prediction of Time Series Data: Application of Water Surface Elevation Forecasting in Hangang River Bridge)

  • 유형주;이승오;최서혜;박문형
    • 한국방재안전학회논문집
    • /
    • 제12권2호
    • /
    • pp.73-82
    • /
    • 2019
  • 최근 이상기후로 인한 집중호우에 따른 하천변 사회기반시설의 침수피해가 증가하고 있으며, 침수 가능성 여부에 대한 신속한 예 경보가 필요한 실정이다. 일반적인 홍수 예 경보는 하천수위를 이용하고 있으며, 수치모형을 이용하여 하천수위를 예측하는 연구가 대부분이었다. 그러나 수치모형을 이용한 하천수위 예측은 결과가 정확한 반면 수치모의 시간이 오래 소요된다는 한계점이 있어 최근에는 인공신경망 등을 적용한 자료기반의 수위예측 모형이 많이 이용되고 있다. 하지만 기존의 인공신경망을 활용한 수위예측 연구는 시간적 매개변수를 고려하지 못하였다는 한계점이 존재한다. 본 연구에서는 시간적 매개변수(Time delay= 2시간)를 고려한 NARX 신경망 모형을 사용하여 한강대교의 수위를 예측하였다. 또한 NARX 모형의 적합성을 판단하기 위하여 인공신경망(ANN) 모형과, 순환신경망(RNN)모형의 결과와 비교하였다. 2009년에서 2018년까지 10년간의 수문자료를 이용하여 70%를 학습시키고 검정과 평가에 15%를 사용하여 2018년의 한강대교 3시간 후 수위를 예측한 결과 평균제곱근오차(RMSE)의 경우 ANN, RNN, NARX model이 각각 0.20 m, 0.11 m, 0.09 m, 평균절대오차(MAE)의 경우, 각각 0.12 m, 0.06 m, 0.05 m, 첨두수위 오차(Peak Error)는 각각 1.56 m, 0.55 m, 0.10 m로 나타났다. 연구 대상지역에 대한 시간적 매개변수를 고려한 예측 결과의 오차분석을 통하여 NARX 신경망 모형을 사용하는 것이 수위예측 모형 구축이 가장 적합한 것으로 나타났다. 이는 NARX 신경망 모형이 과거의 입력자료를 고려함으로써 시계열 자료의 변동 추세도 학습 할 수 있으며, 또한 모형 내 활성함수를 쌍곡선탄젠트(Hyperbolic tangent) 및 Rectified Linear Unit(ReLU) 함수를 사용하여 고수위 예측 시에도 정확한 예측 값을 도출할 수 있기 때문이다. 그러나 NARX 신경망 모형은 시퀀스 길이가 길어짐에 따라 기울기 소실문제(Vanishing gradient)가 발생하는 한계점이 있어 향후에는 이를 보완한 LSTM(Long Short Term Model)모형을 이용하여 수위예측의 정확도를 검토하고자 한다.

최초방문자와 재방문자의 관광목적지 선택차이 연구 -서울지역을 중심으로 (A Comparison of First Time and Repeat Visitors' Tourism Destination -Focusing on Seoul City)

  • 김민선;엄혜미
    • 한국산학기술학회논문지
    • /
    • 제17권11호
    • /
    • pp.648-654
    • /
    • 2016
  • 본 연구는 순수 관광을 목적으로 서울 지역을 방문하는 외래관광객을 최초방문자와 재방문자로 분류하여 이들이 선택한 관광목적지에 차이가 있음을 검증하는데 목적이 있다. 이를 위해 한국 문화체육관광부에서 주관한 '2015 외래관광객 실태조사'의 데이터를 활용하여 외래관광객이 방문한 관광지 20개소를 중심으로 연결망 자료를 구성하고 사회연결망 분석방법을 적용하여 밀도와 중심성 분석을 실시하였다. 분석결과, 첫째, 최초방문자와 재방문자의 관광지들은 주로 강북 지역에 편중되어 있었으나 전체적으로 매우 유기적인 연결을 보이고 있었다. 이는 방문자들의 이동량이 많을 뿐만 아니라 전체 이동네트워크가 활발함을 의미한다. 둘째, 관광지들의 연결정도, 근접, 매개 중심성을 분석한 결과, 최초방문자와 재방문자의 상위 관광목적지는 전반적으로 동일했지만 재방문자가 선택한 관광목적지 중 신촌/홍대주변, 강남역, 가로수길 등은 중심성 지수가 높아지면서 결절지로서의 역할이 강화되는 변화를 보였다. 즉, 재방문자는 최근 국내에서도 젊은 연령층에게 각광받고 있는 신흥관광지에 더 매력을 느끼고 있는 것으로 파악된다. 이러한 분석결과를 통해 본 연구가 방문자 특성에 따른 관광상품 개발 및 운영에 기여할 수 있을 것으로 판단된다.

딥러닝을 활용한 산지습지 수위 예측 모형 개발 (Development of Water Level Prediction Models Using Deep Neural Network in Mountain Wetlands)

  • 김동현;김정욱;곽재원;아이미;김종성;김형수
    • 한국습지학회지
    • /
    • 제22권2호
    • /
    • pp.106-112
    • /
    • 2020
  • 습지는 수문, 환경, 생태학적으로 중요한 기능 및 역할을 하며, 특히 습지 내의 수위는 습지의 기능과 환경 등 다양한 분석을 위해 필수적인 자료이다. 그러나 습지는 수위자료를 측정하지 않는 미계측 지역이 많기 때문에, 수위 예측에 대한 연구는 매우 미흡한 실정이다. 따라서 본 연구에서는 습지의 수위를 예측하기 위해 다중회귀분석, 주성분회귀분석, 인공신경망, DNN을 활용하여 수위 예측모형을 개발하였다. 대상지역으로 경상남도 양산시에 위치한 금정산 산지습지를 선정하였고, 2017년 4월부터 2018년 7월까지의 수위 측정자료를 종속변수로 사용하였다. 수문자료와 기상자료를 독립변수로 사용하였다. 예측력 평가결과 최종 모형으로 선정된 DNN을 활용한 수위 예측모형의 예측력 평가결과 RMSE는 6.359, NRMSE는 18.91%로 비교적 산지습지의 수위를 잘 예측하는 것으로 나타났다. 본 연구결과를 활용한다면 기존의 미비하였던 미계측 지점의 수위를 활용한 습지유지 및 관리 기법 개발에 기초자료로 사용할 수 있을 것으로 판단된다.

다중회귀모형과 인공신경망모형을 이용한 금강권역 강수량 장기예측 (Application of multiple linear regression and artificial neural network models to forecast long-term precipitation in the Geum River basin)

  • 김철겸;이정우;이정은;김현준
    • 한국수자원학회논문집
    • /
    • 제55권10호
    • /
    • pp.723-736
    • /
    • 2022
  • 본 연구에서는 금강권역을 대상으로 최대 12개월까지 선행예측이 가능한 월 강수량 예측모형을 구축하였으며, 예측모형 구축에는 다중회귀분석과 인공신경망의 두 가지 통계적 기법을 적용하였다. 예측인자 후보로 NOAA에서 제공하는 글로벌 기후패턴 39종과 금강권역에 대한 기상인자 8종 등 총 47종의 기후지수를 활용하였다. 예측대상월을 기준으로 과거 40년간의 월 강수량과 기후지수와의 지연상관성 분석을 통해 상관도가 높은 기후지수를 예측인자로 활용하여 다중회귀모형 및 인공신경망 모형을 구축하였다. 1991~2021년에 대해 매월 예측결과의 평균값과 관측값과의 적합도를 분석한 결과, 다중회귀모형은 PBIAS -3.3~-0.1%, NSE 0.45~0.50, r 0.69~0.70으로 분석되었으며, 인공신경망모형은 PBIAS -5.0~+0.5%, NSE 0.35~0.47, r 0.64~0.70로, 다중회귀모형에 의해 도출된 예측치의 평균값이 인공신경망모형보다 관측치에 좀 더 근접한 것으로 나타났다. 각 월의 예측범위 안에 관측치가 포함될 확률을 분석한 결과에서는 다중회귀모형이 57.5~83.6%(평균 72.9%), 인공신경망모형의 경우에는 71.5~88.7%(평균 81.1%)로 인공신경망모형 결과가 우수한 것으로 나타났다. 3분위 예측확률을 비교한 결과는 다중회귀모형의 경우에는 25.9~41.9%(평균 34.6%), 인공신경망모형은 30.3~39.1%(평균 34.7%)로 비슷하며, 두 모형 모두 평균 33.3% 이상으로 월 강수량에 대한 장기예측성을 확인 할 수 있었다. 이상과 같이 두 모형의 예측성 차이는 비교적 크지 않은 것으로 나타났으나, 예측범위에 대한 적중률이나 3분위 예측확률로부터 판단할 때 예측성에 대한 월별 편차는 인공신경망모형의 결과가 상대적으로 작게 나타났다.