• Title/Summary/Keyword: River Design based

Search Result 259, Processing Time 0.027 seconds

Estimation of design floods for ungauged watersheds using a scaling-based regionalization approach (스케일링 기법 기반의 지역화를 통한 미계측 유역의 설계 홍수량 산정)

  • Kim, Jin-Guk;Kim, Jin-Young;Choi, Hong-Geun;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.769-782
    • /
    • 2018
  • Estimation of design floods is typically required for hydrologic design purpose. Design floods are routinely estimated for water resources planning, safety and risk of the existing water-related structures. However, the hydrologic data, especially streamflow data for the design purposes in South Korea are still very limited, and additionally the length of streamflow data is relatively short compared to the rainfall data. Therefore, this study collected a large number design flood data and watershed characteristics (e.g. area, slope and altitude) from the national river database. We further explored to formulate a scaling approach for the estimation of design flood, which is a function of the watershed characteristics. Then, this study adopted a Hierarchical Bayesian model for evaluating both parameters and their uncertainties in the regionalization approach, which models the hydrologic response of ungauged basins using regression relationships between watershed structure and model. The proposed modeling framework was validated through ungauged watersheds. The proposed approach have better performance in terms of correlation coefficient than the existing approach which is solely based on area as a predictor. Moreover, the proposed approach can provide uncertainty associated with the model parameters to better characterize design floods at ungauged watersheds.

A Study on the Prevalence of Clonorchis Sinensis and the Effects of Educational Program among Residents in the Basin of the Youngsan River, Korea (영산강 유역 주민의 간흡충 감염실태와 감염 예방교육 프로그램의 효과)

  • Kim, Chun-Mi;So, Ae-Young;June, Kyung-Ja;Jung, Hee-Young
    • Research in Community and Public Health Nursing
    • /
    • v.22 no.1
    • /
    • pp.56-65
    • /
    • 2011
  • Purpose: The goal of this study was to analyze the prevalence of Clonorchis sinensis infection in people living within 5 km of the Youngsan River basin, to develop an educational program to prevent the infection, and to examine the effects of the educational program. Methods: This study employed a one group pretest-posttest design, the subjects were 384. This study was conducted from November 20, 2008 to June 16, 2009. The results were analyzed with the SPSS/WIN 18.0 program. Results: Of the residents, 5.7% were infected with Clonorchis sinensis and the knowledge level about the prevention of Clonorchis sinensis was improved significantly from $9.57{\pm}5.12$ points before the education to $15.05{\pm}2.43$ points after the education. One of the important effects was that the willingness to eat raw fresh-water fish was reduced after the education. Conclusion: Based on the results of this study, a continuous research needs to be conducted on how education and knowledge level-up change people's living attitudes for the prevention of Clonorchis sinensis infection and the reduction of the infection rate in the future.

A Study on Flow Characteristics according to Meandering Low Flow Channel Shape in the Compound Cross Section Typed Straight Channel (복단면인 직선수로 내 사행 저수로의 형태에 따른 흐름특성 연구)

  • Kim, Seonghwan;Choi, Gyewoon
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.484-490
    • /
    • 2017
  • In order to examine flow characteristics according to the shape of the meandering low flow channel in the compound cross section typed straight channel, we assumed the representative channel type in Korea and confirmed the validity of the 3D numerical simulation by carrying out the hydraulic model. Based on this study, numerical simulations were also conducted on other types of river channel. As a result of the numerical model test (using the velocity value measured by the water depth observation from the hydraulic model test), it was confirmed that the numerical simulation results are in good agreement with the numerical simulation results. As a result of analyzing the flow field according to the changes in the shape of the low flow channel, it was confirmed that the secondary flow examined in the previous studies occurred. Also, it was confirmed that the maximum flow velocity point moves according to the expansion cross sectional area of flow in high flow plain. Ultimately, it is thought that it is necessary to understand the position of the water impingement (which is an important factor in river design) and the extent of the impact because the change of the channel width affects the flow.

A Study on Undrained Shear Strength Characteristic of Pusan Clay (부산 점토의 비배수전단강도 특성에 관한 연구)

  • Ryu, Woongryul;Byun, Yoseph;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.3
    • /
    • pp.43-51
    • /
    • 2010
  • In the downstream areas of the Nakdong river, Pusan clays are commonly found and thickness may reach to maximum of 100m. From geological point of view, Pusan clay are characterized as holocene clays, deposited for approximately 20,000 years ago. Recently, there have been many construction projects based on these soft ground areas. It is needed to know clearly soil properties of the areas for design and safety analysis, especially undrained shear strength of soft clays. However, Pusan clay have not been studied systematically because the clay layers are usually very deep, having high sensitivity characteristic. In this study, undisturbed UD samples obtained from the downstream areas of the Nakdong river were researched using laboratory tests (CthUE, CKcUC, CIUC, UU and UC) and in-situ tests (Field Vane, CPTu). The undrained shear strength characteristics of the samples were depicted using stress-strain relationship.

Bivariate Drought Frequency Analysis to Evaluate Water Supply Capacity of Multi-Purpose Dams (이변량 가뭄빈도해석을 통한 다목적댐의 용수공급능력 평가)

  • Yu, Ji Soo;Shin, Ji Yae;Kwon, Minsung;Kim, Tea-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.231-238
    • /
    • 2017
  • Water supply safety index plays an important role on assessing the water supply capacity of hydrologic system. Due to the absence of consistent guidance, however, practical problems have been brought up on data period used for dam design and performance evaluation. Therefore, this study employed bivariate drought frequency analysis which is able to consider drought severity and duration simultaneously, in order to evaluate water supply capacity of multi-purpose dams. Drought characteristics were analyzed based on the probabilistic approach, and water supply capacity of five multi-purpose dams in Korea (Soyang River, Chungju, Andong, Daecheong, Seomjin River) were evaluated under the specific drought conditions. As a result, it would be possible to have stable water supply with their own inflow during summer and fall, whereas water shortage would occur even under the 1-year return period drought event during spring and winter due to low rainfall.

A Study on Design Support Technique for Water Distribution Network using GIS (GIS를 이용한 상수관로 설계지원 기법 연구)

  • Cho, Hyo-Seob;Choi, Seung-Chul;Lee, Gi-Ha;Cho, Bok-Hwan;Kim, Jeong-Yup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.103-116
    • /
    • 2005
  • Although there have been many researches to construct a database of water distribution networks using GIS, most of them were not linked with an model for the analysis of pipe networks because it is difficult to make spatial data about complex water distribution networks for building a detail model. Therefore, it is necessary to develop the method based on GIS to build geographical data for design of water distribution pipeline systems. In this study, an innovated design support technique using GIS is proposed for a hydraulic analysis model of water distribution networks. With the function of spatial analysis in GIS system, the results from a pipe network model are used to analyze the suitability of the location of pipeline network, the spatial suitability comprised the analysis of the degree of pipe age, the altitude distribution of water pressure, and the water supply system for the customer.

  • PDF

An Estimation of the Spatial Development Patterns based on the Characteristic City Indicators - The Case of Gangnam District - (도시특성지표 기반 공간개발 패턴 추정에 관한 연구 - 강남지역을 대상으로 -)

  • Jang, Seongman;Yi, Changhyo
    • Spatial Information Research
    • /
    • v.23 no.3
    • /
    • pp.23-33
    • /
    • 2015
  • Most data used for urban planning is aggregated by administrative district. Thus, a fundamental limit to analysing the changes of micro-geographical units exists. The object of this study is to estimate spatial development patterns based on characteristic city indicators. Gangnam, an area that was analysed, was divided into hexagon polygons. The development density and characteristic city indicators were input into each polygon. Moreover, this study analysed the influence of characteristic city indicators on development density using multinomial regression analysis. According to the results, distance between a polygon and both a road and a bus stop led to a decrease of development density in the polygon. However, distance between a polygon and a river led to an increase of development intensity. The method of this analysis and the results can be used to disaggregate the zonal data in the urban planing area.

Development of Hierarchical Bayesian Spatial Regional Frequency Analysis Model Considering Geographical Characteristics (지형특성을 활용한 계층적 Bayesian Spatial 지역빈도해석)

  • Kim, Jin-Young;Kwon, Hyun-Han;Lim, Jeong-Yeul
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.469-482
    • /
    • 2014
  • This study developed a Bayesian spatial regional frequency analysis, which aimed to analyze spatial patterns of design rainfall by incorporating geographical information (e.g. latitude, longitude and altitude) and climate characteristics (e.g. annual maximum series) within a Bayesian framework. There are disadvantages to considering geographical characteristics and to increasing uncertainties associated with areal rainfall estimation on the existing regional frequency analysis. In this sense, this study estimated the parameters of Gumbel distribution which is a function of geographical and climate characteristics, and the estimated parameters were spatially interpolated to derive design rainfall over the entire Han-river watershed. The proposed Bayesian spatial regional frequency analysis model showed similar results compared to L-moment based regional frequency analysis, and even better performance in terms of quantifying uncertainty of design rainfall and considering geographical information as a predictor.

mprovement of Estimation Method of Load Capture Ratio for Design and Evaluation of Bio-retention LID Facility (생태저류지 LID 시설의 설계 및 평가를 위한 삭감대상부하비 산정방법 개선)

  • Choi, Jeonghyeon;Lee, Okjeong;Kim, Yongseok;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.569-578
    • /
    • 2018
  • To minimize the negative alterations in hydrologic and water quality environment in urban areas due to urbanization, Low Impact Development (LID) techniques are actively applied. In Korea, LID facilities are classified as Non-point Pollution Reduction Facilities (NPRFs), and therefore they are evaluated using the performance evaluation method for NPRFs. However, while LID facilities are generally installed in small, distributed configuration and mainly work with the infiltration process, the existing NPRFs are installed on a large scale and mainly work with the reservoir process. Therefore, some limitations are expected in assessing both facilities using the same method as they differ in properties. To solve these problems, in this study, a new method for performance evaluation was proposed with focus on bio-retention LID facilities. EPA SWMM was used to reproduce the hydrologic and water quality phenomena in study area, and SWMM-LID module used to simulate TP interception performance by installing a bio-retention cell under various conditions through long-term simulations. Finally, an empirical formula for Load Capture Ratio (LCR) was derived based on storm water interception ratio in the same form as the existing method. Using the existing formula in estimating the LCR is likely to overestimate the performance of interception for non-point pollutants in the extremely low design capacity, and also underestimate it in the moderate and high design capacity.

A Study on the Simulation of Monthly Discharge by Markov Model (Markov모형에 의한 월유출량의 모의발생에 관한 연구)

  • 이순혁;홍성표
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.4
    • /
    • pp.31-49
    • /
    • 1989
  • It is of the most urgent necessity to get hydrological time series of long duration for the establishment of rational design and operation criterion for the Agricultural hydraulic structures. This study was conducted to select best fitted frequency distribution for the monthly runoff and to simulate long series of generated flows by multi-season first order Markov model with comparison of statistical parameters which are derivated from observed and sy- nthetic flows in the five watersheds along Geum river basin. The results summarized through this study are as follows. 1. Both two parameter gamma and two parameter lognormal distribution were judged to be as good fitted distributions for monthly discharge by Kolmogorov-Smirnov method for goodness of fit test in all watersheds. 2. Statistical parameters were obtained from synthetic flows simulated by two parameter gamma distribution were closer to the results from observed flows than those of two para- meter lognormal distribution in all watersheds. 3. In general, fluctuation for the coefficient of variation based on two parameter gamma distribution was shown as more good agreement with the observed flow than that of two parameter lognormal distribution. Especially, coefficient of variation based on two parameter lognormal distribution was quite closer to that of observed flow during June and August in all years. 4. Monthly synthetic flows based on two parameter gamma distribution are considered to give more reasonably good results than those of two parameter lognormal distribution in the multi-season first order Markov model in all watersheds. 5. Synthetic monthly flows with 100 years for eack watershed were sjmulated by multi- season first order Markov model based on two parameter gamma distribution which is ack- nowledged to fit the actual distribution of monthly discharges of watersheds. Simulated sy- nthetic monthly flows may be considered to be contributed to the long series of discharges as an input data for the development of water resources. 6. It is to be desired that generation technique of synthetic flow in this study would be compared with other simulation techniques for the objective time series.

  • PDF