• Title/Summary/Keyword: River Design based

Search Result 259, Processing Time 0.026 seconds

Intelligent cooling control for mass concrete relating to spiral case structure

  • Ning, Zeyu;Lin, Peng;Ouyang, Jianshu;Yang, Zongli;He, Mingwu;Ma, Fangping
    • Advances in concrete construction
    • /
    • v.14 no.1
    • /
    • pp.57-70
    • /
    • 2022
  • The spiral case concrete (SCC) used in the underground powerhouse of large hydropower stations is complex, difficult to pour, and has high requirements for temperature control and crack prevention. In this study, based on the closed-loop control theory of "multi-source sensing, real analysis, and intelligent control", a new intelligent cooling control system (ICCS) suitable for the SCC is developed and is further applied to the Wudongde large-scale underground powerhouse. By employing the site monitoring data, numerical simulation, and field investigation, the temperature control quality of the SCC is evaluated. The results show that the target temperature control curve can be accurately tracked, and the temperature control indicators such as the maximum temperature can meet the design requirements by adopting the ICCS. Moreover, the numerical results and site investigation indicate that a safety factor of the spiral case structure was sure, and no cracking was found in the concrete blocks, by which the effectiveness of the system for improving the quality of temperature control of the SCC is verified. Finally, an intelligent cooling control procedure suitable for the SCC is proposed, which can provide a reference for improving the design and construction level for similar projects.

Upper bound solution on seismic anchor force and earth pressure of a combined retaining structure

  • Yu-liang Lin;Li Lu;Hao Xing;Xi Ning;Li-hua Li
    • Geomechanics and Engineering
    • /
    • v.39 no.2
    • /
    • pp.171-179
    • /
    • 2024
  • Gravity wall combined with anchoring frame beam is widely adopted to support a high slope under complex geomorphic condition, in which the rigid gravity wall is adopted as a lower structure and the flexible anchoring frame beam serves as an upper structure. The seismic anchor force and the seismic active earth pressure are two essential issues for the seismic design of combined retaining structure in high seismic intensity area. In this study, an analytical model of combined retaining structure is established based on the upper bound theorem of limit analysis, and the formulas for seismic anchor force and seismic active earth pressure of combined retaining structure are derived. The results are optimized by using the global optimization algorithm. The proposed method is verified by a comparison with previous method. Moreover, the influence of main parameters on seismic anchor force and seismic active earth pressure is analyzed to facilitate the seismic design of such combined retaining structure.

Design and Performance Prediction of Small Hydropower Plant Using Treated Effluent in Wastewater Treatment Plant (하수처리수를 이용한 소수력발전소 설계 및 성능예측)

  • Lee, Chul-Hyung;Park, Wan-Soon;Kim, Won-Kyoung;Kim, Jeong-Yeon;Chae, Kyu-Jung
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.78-83
    • /
    • 2013
  • A methodology to predict the output performance of small hydro power plant using treated effluent in waste water treatment plant has been studied. Existing waste water treatment plant located in Kyunggi-Do were selected and the output performance characteristics for these plants were analyzed. .Based on the models developed in this study, the hydrologic performance characteristics for SHP sites have been analyzed. The results show that the flow duration characteristics of small hydropower plant for waste water treatment plant have quite differences compared with small hydropower plant for the river. As a result, it was found that the developed model in this study can be used to analyze the output characteristics for small hydro power in waste water treatment plant. Additionally, primary design specifications such as design flowrate, capacity, operational rate and annual electricity production were estimated and discussed. It was found that the models developed in this study can be used to decide the design performance of small hydropower plant for waste water treatment plant effectively.

The Landscape Configuration and Semantic Landscape of Hamheo-pavilion in Gokseong (곡성 함허정(涵虛亭)의 경관짜임과 의미경관)

  • Lee, Hyun-Woo;Sim, Woo-Kyung;Rho, Jae-Hyun;Shin, Sang-Sup
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.1
    • /
    • pp.52-64
    • /
    • 2015
  • This research traced the characteristics of the semantic landscape, construction intent, landscape composition, and geomantic conditions of the area subject to the research based on the research methods of 'field investigation, document studies, and interviews,' centering around the entire area of Gokseong Hamheo-pavilion (Jeonnam Tangible Cultural Assets No. 160). The result of the research, specifically revealing the forms and methods by which the reciprocal view of nature and landscape composition appearing in the landscape of the entire area of Hamheo-pavilion, as part of the analysis and interpretation over the view-based construction characteristics and position of the entire area of Gokseong Hamheo-pavilion, can be summarized as follows. First, Hamheo-pavilion is a pavilion built as a resting area and as a venue for educational activities in 1543 in the nearby areas after Gwang-hyeon Sim founded Gunjichon-jeongsa for educational activities and dwelling purposes at Gunchon at the 30th year of King Jungjong. Gunchon, where Hamheo-pavilion and Gunjichon-jeongsa is located, exhibits the typical form having water in the front, facing Sunja-river(present Seomjin-river), and a mountain in the back side. Dongak-mountain, which is a guardian mountain, is in a snail-type form where cows leisurely ruminate and lie on the riverside, and the Hamheo-pavilion area is said to be an area bordering on one's way of enjoying peace and richness as it is a place with plentiful grass bushes available for cows to ruminate and lie down while sheppards may leisurely play their flutes at the riverside. The back hill of Hamheo-pavilion is a blood vessel that enters the water into the underwater palace of the turtle, and the building sitting on the turtle's back is Hamheo-pavilion, and the Guam-jodae(龜巖釣臺) and lava on the southern side below the cliff can be interpreted to be the underwater fairly land wanted by the turtle.6) Second, Hamheo-pavilion is the scenery viewpoint of Sungang-Cheongpung (3rd Scenery) and Seolsan-Nakjo(雪山落照, 9th Scenery) among the eight sceneries of Gokseong, while also the scenery viewpoint of Hamheo-Sunja(2nd Scenery) and Cheonma-Gwiam(天馬歸岩, 3rd Scenery) among the eight sceneries of Ipmyeon. On the other hand, the pavilion is reproduced through the aesthetics of bends through sensible penetration and transcendental landscape viewed based on the Confucian-topos and ethics as the four bends among the five bends of Sunja-river arranged in the 'Santaegeuk(山太極) and Sutaeguek(水太極, formation of the yin-yang symbol by the mountain and water)' form, which is alike the connection of yin and yang. In particular, when based on the description over Mujinjeong (3rd Bend), Hoyeonjeong(4th Bend), andHapgangjeong(2nd Bend) among the five bends of Sunja-river in the records of Bibyeonsainbangan-jido(duringthe 18th century) and Okgwahyeonji(1788), the scenery of the five bends of Sunja-river allow to glimpse into its reputation as an attraction-type connected scenery in the latter period of the Joseon era, instead of only being perceived of its place identity embracing the fairyland world by crossing in and out of the world of this world and nirvana. Third, Hamheo-pavilion, which exhibits exquisite aesthetics of vacancy, is where the 'forest landscape composed of old big trees such as oak trees, oriental oak trees, and pine trees,' 'rock landscape such as Guam-jodae, lava, and layered rocks' and 'cultural landscape of Gunchon village' is spread close by. In the middle, it has a mountain scenery composed of Sunja-river, Masan-peak, and Gori-peak, and it is a place where the scenery by Gori-peak, Masan-peak, Mudeung-mountain, and Seol-mountain is spread and open in $180^{\circ}$ from the east to west. Mangseo-jae, the sarangchae (men's room)of Gunjichon-jeongsa, means a 'house observing Seoseok-mountain,' which has realized the diverse view-oriented intent, such as by allowing to look up Seol-mountain or Mudeung-mountain, which are back mountains behind the front mountain, through landscape configuration. Fourth, the private home, place for educational activities, pavilion, memorial room, and graveyard of Gunji-village, where the existence and ideal is connected, is a semantic connected scenery relating to the life cycle of the gentry linking 'formation - abundance - transcendence - regression.' In particular, based on the fact that the descriptions over reciprocal views of nature regarding an easy and comfortable life and appreciations for a picturesque scene of the areas nearby Sunja-river composes most of the poetic phrases relating to Hamheo-pavilion, it can be known that Hamheo-pavilion is expressed as the key to the idea of 'understanding how to be satisfied while maintaining one's positon with a comfortable mind' and 'returning to nature,' while also being expressed of its pedantic character as a place for reclusion for training one's mind and training others through metaphysical semantic scenery.

The Color Palette for Planning Exterior Colors of the Apartment in Seoul Area (서울지역 아파트 외장색채 계획을 위한 색채팔레트)

  • 박영순;신인호
    • Archives of design research
    • /
    • v.14 no.1
    • /
    • pp.83-92
    • /
    • 2001
  • Apartment exterior colors have an important effect on the images of cities and communities. Therefore planning the apartment exterior colors have to proceed systematically and synthetically based on the theoretical background. In this research, the first step is to investigate the apartment exterior colors which is located around the Han River in Seoul. And the second step is to survey the images of the S construction company in Korea. The results of this study are as follows: 1. The trends of apartment exterior colors on the basis of 1996 are showed differently. Bright and high saturation colors are more used after 1996, and divers color combinations are more tried than before. 2. Common customer Has positive images about the S construction company such as young, fresh, confidence and smart. Also they want the other images such as comfort, ease and coziness. 3. Two color combination palettes were proposed in this research. The first color combination is blue and yellow which is based on the dear and smart images. And the second color combination is green and orange which is based on the comfort and ease images.

  • PDF

Transition of Pumping Technology, Irrigation Water Requirement, and Unit Area Drainage Discharge at Pumping Station-based Irrigation Associations in South Korea during Japanese Colonial Period (in Review) (일제하 양배수장형 수리조합에서의 양수기술과 단위용·배수량의 변천 (리뷰 논문))

  • Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.59-73
    • /
    • 2021
  • The purpose of this study is to investigate transition of pumping technology, irrigation water requirement, and unit area drainage discharge at the Pumping station-based Irrigation Associations (PIAs) in South Korea during Japanese colonial period (1910-1945). The PIAs established pumping stations and embankments along rivers for the purpose of irrigation, drainage and flood prevention until the mid-1920s. From the late 1920s after major river improvement projects, newly established PIAs did not include the flood prevention in their purpose of establishment. The design criteria of the irrigation and drainage projects, such as irrigation water requirements, design rainfall, and allowable ponding duration were decided according to the circumstances of PIAs. The gross irrigation water requirement of paddy fields increased from the 1920s to the 1940s, and reached the level of 0.0020 m3/s/ha (19 mm/d) in the 1940s for the fairly good irrigation status in the drought. The great floods of 1930, 1933, and 1934 triggered the increase in drainage discharge in the late 1930s, leading to the unit area drainage discharge of 0.9-2.6 m3/s/km2 for natural drainage and 0.3-1.1 m3/s/km2 for pump drainage. Therefore, several PIAs near the major rivers could avoid repetitive floods damage.

Determination of Parameters for the Clark Model based on Observed Hydrological Data (실측수문자료에 의한 Clark 모형의 매개변수 결정)

  • Ahn, Tae Jin;Jeon, Hyun Chul;Kim, Min Hyeok
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.121-131
    • /
    • 2016
  • The determination of feasible design flood is the most important to control flood damage in river management. Concentration time and storage constant in the Clark unit hydrograph method mainly affects magnitude of peak flood and shape of hydrograph. Model parameters should be calibrated using observed discharge but due to deficiency of observed data the parameters have been adopted by empirical formula. This study is to suggest concentration time and storage constant based on the observed rainfall-runoff data at GongDo stage station in the Ansung river basin. To do this, five criteria have been suggested to compute root mean square error(RMSE) and residual of oserved value and computed one. Once concentration time and storage constant have been determined from three rainfall-runoff event selected at the station, the five criteria based on observed hydrograph and computed hydrograph by the Clark model have been computed to determine the value of concentration time and storage constant. A criteria has been proposed to determine concentration time and storage constant based on the results of the observed hydrograph and the Clark model. It has also been shown that an exponent value of concentration time-cumulative area curve should be determined based on the shape of watershed.

A Landscape Possessor and Enjoyment of Jongho on the Mansutan River Traced by Stone Inscription and 'Jongho Eight Views' (바위글씨와 팔경으로 추적한 만수탄(萬水灘) 종호(鍾湖)의 경관 향유자와 풍류상)

  • Rho, Jae-Hyun;Kim, Hwa-Ok;Park, Yool-Jin;Kim, Hong-Gyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.1
    • /
    • pp.53-66
    • /
    • 2020
  • This study was attempted to seek the garden enjoyment of the Yang Un-geo etc., in the head house(宗宅) of Namwonyang's family and Jongho in Sunchang Gumiri through literature and field research. Admirers of Jongho were "six old Taoist hermit", including Cholo(楚老) Yang Un-geo(楊雲擧, 1613-1672) and Yangjindang Haman-ri, the author of Jongho-palgyeong, who was very close friends of Yang, as well as his son-in-law or out-law. Jonghojeong Pavilion, overland rock and nearby Takyeongjeong, which were built around a stone island shaped like a helmet, and a pool along the river, are known as 'Imcheonwonrim(林泉園林)' as the center of the custom that was conducted based on head house, which is up to 2km away from Jongho. Jongho-palgyeong is found to share the characteristics of Jeongja Palgyeong, which is based on Jonghoam, overland and Takyeongjeong, and the characteristics of the town's township of Namwonyang, Gumi-ri. The number of rock letters identified by the Mansutan members is a total of nine points, which clearly indicates that the scene was a scene where the custom of call to create poetry·fishing·playing musical instruments and drinking, as well as the scenery and landscape structure of the Jongho Palgyeong. Jongho Palgyeong, its customs and surrounding rock writing are highly suggestive and valid cultural views to remind or direct the old landscape of Mansutan Jongho and suggest to modern traditional landscapes as well as the "Noblesse oblige landscape enjoyment case."

Estimation of Future Design Flood Under Non-Stationarity for Wonpyeongcheon Watershed (비정상성을 고려한 원평천 유역의 미래 설계홍수량 산정)

  • Ryu, Jeong Hoon;Kang, Moon Seong;Park, Jihoon;Jun, Sang Min;Song, Jung Hun;Kim, Kyeung;Lee, Kyeong-Do
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.139-152
    • /
    • 2015
  • Along with climate change, it is reported that the scale and frequency of extreme climate events show unstable tendency of increase. Thus, to comprehend the change characteristics of precipitation data, it is needed to consider non-stationary. The main objectives of this study were to estimate future design floods for Wonpyeongcheon watershed based on RCP (Representative Concentration Pathways) scenario. Wonpyeongcheon located in the Keum River watershed was selected as the study area. Historical precipitation data of the past 35 years (1976~2010) were collected from the Jeonju meteorological station. Future precipitation data based on RCP4.5 were also obtained for the period of 2011~2100. Systematic bias between observed and simulated data were corrected using the quantile mapping (QM) method. The parameters for the bias-correction were estimated by non-parametric method. A non-stationary frequency analysis was conducted with moving average method which derives change characteristics of generalized extreme value (GEV) distribution parameters. Design floods for different durations and frequencies were estimated using rational formula. As the result, the GEV parameters (location and scale) showed an upward tendency indicating the increase of quantity and fluctuation of an extreme precipitation in the future. The probable rainfall and design flood based on non-stationarity showed higher values than those of stationarity assumption by 1.2%~54.9% and 3.6%~54.9%, respectively, thus empathizing the necessity of non-stationary frequency analysis. The study findings are expected to be used as a basis to analyze the impacts of climate change and to reconsider the future design criteria of Wonpyeongcheon watershed.

RAMS evaluation for a steel-truss arch high-speed railway bridge based on SHM system

  • Zhao, Han-Wei;Ding, You-Liang;Geng, Fang-Fang;Li, Ai-Qun
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.79-92
    • /
    • 2018
  • The evaluation theory of reliability, availability, maintainability and safety (RAMS) as a mature theory of state evaluation in the railway engineering, can be well used to the evaluation, management, and maintenance of complicated structure like the long-span bridge structures on the high-speed railway. Taking a typical steel-truss arch bridge on the Beijing-Shanghai high-speed railway, the Nanjing Dashengguan Yangtze River Bridge, this paper developed a new method of state evaluation for the existing steel-truss arch high-speed railway bridge. The evaluation framework of serving state for the bridge structure is presented based on the RAMS theory. According to the failure-risk, safety/availability, maintenance of bridge members, the state evaluation method of each monitoring item is presented. The weights of the performance items and the monitoring items in all evaluation levels are obtained using the analytic hierarchy process. Finally, the comprehensive serving state of bridge structure is hierarchical evaluated.