• Title/Summary/Keyword: Ritz solution

Search Result 72, Processing Time 0.019 seconds

Analytical solutions for vibrations of rectangular functionally graded Mindlin plates with vertical cracks

  • Chiung-Shiann Huang;Yun-En Lu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.69-83
    • /
    • 2023
  • Analytical solutions to problems are crucial because they provide high-quality comparison data for assessing the accuracy of numerical solutions. Benchmark analytical solutions for the vibrations of cracked functionally graded material (FGM) plates are not available in the literature because of the high level of complexity of such solutions. On the basis of first-order shear deformation plate theory (FSDT), this study proposes analytical series solutions for the vibrations of FGM rectangular plates with side or internal cracks parallel to an edge of the plates by using Fourier cosine series and the domain decomposition technique. The distributions of FGM properties along the thickness direction are assumed to follow a simple power law. The proposed analytical series solutions are validated by performing comprehensive convergence studies on the vibration frequencies of cracked square plates with various crack lengths and under various boundary condition combinations and by performing comparisons with published results based on various plate theories and the theory of three-dimensional elasticity. The results reveal that the proposed solutions are in excellent agreement with literature results obtained using the Ritz method on the basis of FSDT. The paper also presents tabulations of the first six nondimensional frequencies of cracked rectangular Al/Al2O3 FGM plates with various aspect ratios, thickness-to-width ratios, crack lengths, and FGM power law indices under six boundary condition combinations, the tabulated frequencies can serve as benchmark data for assessing the accuracy of numerical approaches based on FSDT.

The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3-D elasticity

  • Lingqin Xia;Ruiquan Wang;Guang Chen;Kamran Asemi;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.375-389
    • /
    • 2023
  • In this study, free vibration analysis of functionally graded (FG) porous truncated conical shell panels reinforced by graphene platelets (GPLs) has been investigated for the first time. Additionally, the effect of three different types of porosity distribution and five different types of GPLs patterns on dynamic response of the shell are also studied. Halpin-Tsai micromechanical model and Voigt's rule are used to determine Young modulus, shear modulus and Poisson's ratio with mass densities of the shell, respectively. The main novelties of present study are: applying 3D elasticity theory and the finite element method in conjunction with Rayleigh-Ritz method to give more accurate results unlike other simplified shell theories, and also presenting a general 3D solution in cylindrical coordinate system that can be used for analyses of different structures such as circular, annular and annular sector plates, cylindrical shells and panels, and conical shells and panels. A convergence study is performed to justify the correctness of the obtained solution and numerical results. The impact of porosity and GPLs patterns, the volume of voids, the weight fraction of graphene nanofillers, semi vertex and span angles of the cone, and various boundary conditions on natural frequencies of the functionally graded panel have been comprehensively studied and discussed. The results show that the most important parameter on dynamic response of FG porous truncated conical panel is the weight fraction of nanofiller and adding 1% weight fraction of nanofiller could increase 57% approximately the amounts of natural frequencies of the shell. Moreover, the porosity distribution has great effect on the value of natural frequency of structure rather than the porosity coefficient.