• Title/Summary/Keyword: Risks of exceeding the standard

Search Result 3, Processing Time 0.015 seconds

Geoinformation decision support system for remediation of the 137Cs contaminated agricultural lands after the Chernobyl NPP accident

  • Titov, Igor Evgenievich;Krechetnikov, Viktor Vladimirovich;Mikailova, Rena Aleksandrovna;Panov, Aleksei Valerievich
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2244-2252
    • /
    • 2022
  • Based on GIS technologies, a decision support system (GIDSS) has been developed to remediate agricultural lands in the Bryansk region (Russia) contaminated by 137Cs after the accident at the Chernobyl nuclear power plant. GIDSS is a multilevel system consisting of basic, information and computational layers. GIDSS allows justifying a targeted approach for the remediation of agricultural lands belonging to agricultural enterprises for the production that meets the established radiological requirements for the content of radionuclides. Evaluation of the effectiveness of alternative remediation technologies and the selection of optimal measures were carried out at the level of elementary plots using radiological criteria. The introduction of GIDSS will enable agricultural producers in the south-western districts of the Bryansk region to conduct radiation-safe agro-industrial production in radioactively contaminated areas, which will help improve the socio-economic situation of the region and return it to normal living conditions.

Human Health Risk Assessment of BTEX from Daesan Petrochemical Industrial Complex (대산 석유화학 산업단지 인근 지역에서의 BTEX 인체 위해성 평가)

  • Lee, Jihyeong;Jang, Yong-Chul;Cheon, Kwangsoo;Kim, Bora
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.5
    • /
    • pp.321-333
    • /
    • 2022
  • In this study, the concentration and distribution characteristics of BTEX (benzene toluene, ethylbenzene, and xylene) emitted from Daesan Petrochemical Industrial Complex were examined to determine their potential hazards to local residents. Residents living nearby the complex areas may be exposed to the chemicals through various media (air, water, and soil), especially by air. This study evaluated human health risks by inhalation using both deterministic and probabilistic risk assessment approaches. As a result of the deterministic risk assessment, the non-cancer risk was much lower than the regulation limit of hazard index (HI 1.0) for all the points. However, in case of cancer risk evaluation, it was found that the risk of excess cancer for benzene at point A located in the industrial complex was 2.28×10-6, which slightly exceeded the standard regulatory limit of 1.0×10-6. In addition, the probabilistic risk assessment revealed that the percentile exceeding the standard of 1.0×10-6was found to be 45.3%. The sensitivity analysis showed that exposure time (ET) had the greatest impact on the results. Based on the risk assessment study, it implied that ethylbenzene, toluene, and xylene had little adverse effects on potential human exposure, but benzene often exceeded the cancer risk standard (1.0×10-6). Further studies on extensive VOCs monitoring are needed to evaluate the potential risks of industrial complex areas.

Estimation of Premature Deaths due to Exposure to Particulate Matter (PM2.5) Reflecting Population Structure Change in South Korea (인구구조 변동 추세를 반영한 미세먼지 노출에 의한 조기 사망자 추정)

  • Junghyun Park;Yong-Chul Jang;Jong-Hyeon Lee
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.6
    • /
    • pp.362-371
    • /
    • 2023
  • Background: PM2.5 pollution has been a persistent problem in South Korea, with concentrations consistently exceeding World Health Organization (WHO) guidelines. The aging of the population in the country further exacerbates the health impacts of PM2.5 since older adults are more susceptible to the adverse effects of air pollution. Objectives: This study aims to evaluate how the health impact (premature death) due to long-term exposure to PM2.5 in South Korea could change in the future according to the trend of change in the country's population structure. Methods: The study employs a relative risk function, which accounts for age-specific relative risks, to assess the changes in premature deaths by age and region at the average annual PM2.5 concentration for 2022 and at PM2.5 concentration improvement levels. Premature deaths were estimated using the Global Exposure Mortality Model (GEMM). Results: The findings indicate that the increase in premature deaths resulting from the projected population structure changes up to 2050 would significantly outweigh the health benefits (reduction in premature deaths) compared to 2012. This is primarily attributed to the rising number of premature deaths among the elderly due to population aging. Furthermore, the study suggests that the effectiveness of the current domestic PM2.5 standard would be halved by 2050 due to the increasing impact of population aging on PM2.5-related mortality. Conclusions: The study highlights the importance of considering trends in population structure when evaluating the health benefits of air pollution reduction measures. By comparing and evaluating the health benefits in reflection of changes in population structure to the predicted PM2.5 concentration improvements at the provincial level, a more comprehensive assessment of regional air quality management strategies can be achieved.