• 제목/요약/키워드: Risk safety areas

Search Result 390, Processing Time 0.032 seconds

An Analysis on the Spatial Pattern of Local Safety Level Index Using Spatial Autocorrelation - Focused on Basic Local Governments, Korea (공간적 자기상관을 활용한 지역안전지수의 공간패턴 분석 - 기초지방자치단체를 중심으로)

  • Yi, Mi Sook;Yeo, Kwan Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.29-40
    • /
    • 2021
  • Risk factors that threaten public safety such as crime, fire, and traffic accidents have spatial characteristics. Since each region has different dangerous environments, it is necessary to analyze the spatial pattern of risk factors for each sector such as traffic accident, fire, crime, and living safety. The purpose of this study is to analyze the spatial distribution pattern of local safety level index, which act as an index that rates the safety level of each sector (traffic accident, fire, crime, living safety, suicide, and infectious disease) for basic local governments across the nation. The following analysis tools were used to analyze the spatial autocorrelation of local safety level index : Global Moran's I, Local Moran's I, and Getis-Ord's G⁎i. The result of the analysis shows that the distribution of safety level on traffic accidents, fire, and suicide tends to be more clustered spatially compared to the safety level on crime, living safety, and infectious disease. As a result of analyzing significant spatial correlations between different regions, it was found that the Seoul metropolitan areas are relatively safe compared to other cities based on the integrated index of local safety. In addition, hot spot analysis using statistical values from Getis-Ord's G⁎i derived three hot spots(Samchuck, Cheongsong-gun, and Gimje) in which safety-vulnerable areas are clustered and 15 cold spots which are clusters of areas with high safety levels. These research findings can be used as basic data when the government is making policies to improve the safety level by identifying the spatial distribution and the spatial pattern in areas with vulnerable safety levels.

Consequence Analysis on the Leakage Accident of Hydrogen Fuel in a Combined Cycle Power Plant: Based on the Effect of Regional Environmental Features (복합화력발전소 내 수소연료 적용 시 누출 사고에 대한 피해영향범위 분석: 지역별 환경 특성 영향에 기반하여)

  • HEEKYUNG PARK;MINCHUL LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.698-711
    • /
    • 2023
  • Consequence analysis using an ALOHA program is conducted to calculate the accidental impact ranges in the cases of hydrogen leakage, explosion, and jet fire in a hydrogen fueled combined cycle power plant. To evaluate the effect of weather conditions and topographic features on the damage range, ALOHA is executed for the power plants located in the inland and coastal regions. The damage range of hydrogen leaked in coastal areas is wider than that of inland areas in all risk factors. The obtained results are expected to be used when designing safety system and establishing safety plans.

Arsenic Contamination of Polished Rice Produced in Abandoned Mine Areas and Its Potential Human Risk Assessment using Probabilistic Techniques (폐광지역에서 생산된 백미 중 비소오염도와 확률론적 기법을 이용한 인체 위해성 평가)

  • Lee, Ji-Ho;Kim, Won-Il;Jeong, Eun-Jung;Yoo, Ji-Hyock;Kim, Ji-Young;Paik, Min-Kyung;Park, Byung-Jun;Im, Geon-Jae;Hong, Moo-Ki
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.43-51
    • /
    • 2011
  • BACKGROUND: This study was conducted to investigate the arsenic (As) contaminations in polished rice cultivated nearby abandoned mine areas, and to estimate the potential health risk through dietary intake of As-enriched polished rice in each age-gender population. METHODS AND RESULTS: The As contents in polished rice grown fifteen abandoned mine areas were analyzed. The average daily intake (ADD) as well as probabilistic health risk were estimated by assuming probability distribution of exposure parameters. The average total As concentration in polished rice was $0.09{\pm}0.06$ mg/kg with a range of 0.02~0.35 mg/kg. For health risk assessment, the ADD values in all age-gender populations did not exceed the provisional tolerable daily intake (PTDI) of 2.1 ${\mu}g/kg$ b.w./day for inorganic As. Cancer risk probability (R) values were $2.45{\sim}3.28{\times}10^{-4}$ and $2.51{\sim}5.75{\times}10^{-4}$ for all age population and gender population, respectively. Particularly, the R value, $5.75{\times}10^{-4}$, for children less than six years old were estimated to be high. Hazard quotient (HQ) values were 0.23~0.31 and 0.11~0.33 for general population and age-gender population, respectively. CONCLUSION(s): The average R values assessed via intake of polished rice cultivated in abandoned mine areas exceeded the acceptable cancer risk of $10^{-6}{\sim}10^{-4}$ for regulatory purpose. Considering the HQ values smaller than 1.0, potential non-cancer toxic effects may not be caused by the long-time exposure through intake of As-contaminated polished rice.

Methodology of Identifying Crime Vulnerable Road and Intersection Using Digital Map Version 2.0 (수치지도 2.0을 이용한 범죄 취약도로 및 교차점 식별기법)

  • Kim, Eui Myoung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.135-142
    • /
    • 2014
  • As interest in social safety has recently increased at the national level, the various activities which can effectively prevent crimes are being carried out. Because the existing maps related to crimes provide the information about the present condition of crimes by administrative district for users, women and pedestrians who go by night could not actually grasp safe roads in advance. Therefore, this study developed the methodology that can easily extract dangerous areas due to crimes by the digital map 2.0. In the digital map 2.0, location and attribute information of center-lines of roads and building layers were used to find dangerous areas of crimes in these layers. Pavement materials and road width which are already built by the attribute information were used in the center-lines of roads. Crossing angles that roads and roads cross each other were additionally extracted and utilized. The attribute information about building types were input in the building layers of the digital map 2.0. The areas that are more the threshold values set by totaling up all the risk scores when considering pavement materials, road width, crossing angles of road, and building types in the center-lines of roads and road crossings were extracted as the dangerous areas that crimes can occur. Verification of the developed methodology was done by experiment. In the spatial apsect, the dangerous areas of crimes could be found by using the digital 2.0, roads, and building layers only through the experiment. In the administrative aspect to prevent crimes, additional installation of safety facilities such as street lights and security lights in the identified areas which are vulnerable for crimes is thought to be increasing safety of dangerous areas.

A Study on the Development of a Traffic Accident Ratio Model in Foggy Areas (안개지역의 교통사고심각도 모형개발에 관한 연구)

  • Lee, Soo-Il;Won, Jai-Mu;Ha, Oh-Keun
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.171-177
    • /
    • 2008
  • As the risk of traffic accidents caused by mists emerged as a social problem, recently safety facilities to be prepared for mists are being actively installed when designing roads. But in some part, the facilities are being installed imprudently without analyzing the extent of occurrences of mists that would increase the risk of traffic accidents and appropriate countermeasures against the occurrences of mists are not being suggested. For that reason, in this study, first questionnaire surveys were executed on road users in order to draw the factors affecting the traffic accidents caused by mists, a mist traffic accident predicting model was developed and an accident seriousness determining model that can determine accident seriousness was developed. In this way, by extracting major factors affecting mist traffic accidents to grasp risk factors in roads to be caused by mists, safety of roads can be enhanced and traffic accidents in road operations can be decreased. As the affecting factors influencing mist traffic accidents, were extracted sightable distances, durations of mists and whether daytime or nighttime as major factors and the plan to install the facilities for the prevention of mist traffic accidents was suggested to prevent the traffic accidents to be caused by those factors and also the plan to operate roads considering sightable distances was suggested to solve the problem of insufficient sightable distances to be caused by mists was suggested. It is judged that the road safety in the areas where mists occur can be improved through foregoing methods.

A study on the implementation of UN SAICM in the occupational safety and health (산업안전보건 분야의 UN 국제적 화학물질관리에 대한 전략적 접근(SAICM) 이행에 관한 연구)

  • Lee, Kwon-Seob;Lee, Hye-Jin;Lee, Jong-Han;Yang, Jeong-Sun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.4
    • /
    • pp.282-294
    • /
    • 2010
  • The purpose of SAICM (Strategic Approach to International Chemicals Management) is to minimize the health and environmental hazards from the production and the consumption of chemicals by improving the chemicals management capability of developing countries and implementing a system of the risk assessment and the management based on the precautionary principle until 2020. To achieve this purpose, the UN has prescribed the principles, objectives and establishment of an action plan for the chemicals management strategy which must be carried out at international, local, and national levels, and requested the implementation of the Global Plan of Action (GPA) comprising of 273 recommendations in 36 work areas. SAICM is currently based on voluntary participation, but is expected to become the basic framework of international order in relation to chemicals management in the future. This study aims to analyze the practice in the occupational safety and health area relating to implement 273 recommendations of the GPA, and propose complementary measures for the system in order to provide political advices for establishing future plans to manage industrial chemicals. Twenty three areas of total 36 work areas and 161 items of 273 recommendations have relevance to occupational safety and health areas. We have found that, as a national implementation level, 157 of 161 industrial safety and health items are being implemented at a satisfactory level in regard to the implementation of the GPA, while 4 items, including the ratification of the ILO Conventions 170, 174, 184, and support for GHS (Globally Harmonized System of Classification and Labeling of chemicals) implementation of developing countries, require additional complementary measures for the system and operation.

A Study on the Quantitative Risk Assessment of Hydrogen-CNG Complex Refueling Station (수소-CNG 복합충전소 정량적 위험성평가에 관한 연구)

  • Kang, Seung-Kyu;Huh, Yun-Sil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • This study performed a quantitative risk assessment for hydrogen-CNG complex refueling stations. Individual and societal risks were calculated by deriving accident scenarios that could occur at hydrogen and CNG refueling stations and by considering the frequency of accidents occurring for each scenario. As a result of the risk assessment, societal risk levels were within the acceptable range. However, individual risk has occurred outside the allowable range in some areas. To identify and manage risk components, high risk components were discovered through risk contribution analysis. High risks at the hydrogen-CNG complex refueling station were large leakage from CNG storage containers, compressors, and control panels. The sum of these risks contributed to approximately 88% of the overall risk of the fueling station. Therefore, periodic and intensive safety management should be performed for these high-risk elements.

Predicting Dangerous Traffic Intervals between Ships in Vessel Traffic Service Areas Using a Poisson Distribution (푸아송 분포를 이용한 해상교통관제 구역 내 선박 상호간 교통위험 상황의 발생 간격 분석에 관한 연구)

  • Park, Sang-Won;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.402-409
    • /
    • 2016
  • Vessel traffic servies (VTS) control movements in ports and coastal areas 24 hours a day using VHF. Thus, we were able to check ship movements and the patterns followed by VTS officers in VTS areas using VHF communication analysis. This study is intended to identify control intervals for dangerous situations and provide VTS officers with basic data and guidelines to prevent these occurrences in advance. We listened to Busan port's VHF communication for seven days and obtained risk values using the Park model with reference to controlled ships. The probability of a dangerous situation arising under a controller's watch per unit of time was confirmed to follow a Poisson distribution. As a result, for each 3.50 hours that VTS directly controls an area, (and in daytime for each 2.85 hours) a ship communicates in a VTS area every 3.84 hours, and some of there communications exceed certain risk values in VTS areas.

Establishment of Crowd Management Safety Measures Based on Crowd Density Risk Simulation (군중 밀집 위험도 시뮬레이션 기반의 인파 관리 안전대책 수립)

  • Hyuncheol Kim;Hyungjun Im;Seunghyun Lee;Youngbeom Ju;Soonjo Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.96-103
    • /
    • 2023
  • Generally, human stampedes and crowd collapses occur when people press against each other, causing falls that may result in death or injury. Particularly, crowd accidents have become increasingly common since the 1990s, with an average of 380 deaths annually. For instance, in Korea, a stampede occurred during the Itaewon Halloween festival on October 29, 2022, when several people crowded onto a narrow, downhill road, which was 45 meters long and between 3.2 and 4 meters wide. Precisely, this stampede was primarily due to the excessive number of people relative to the road size. Essentially, stampedes can occur anywhere and at any time, not just at events, but also in other places where large crowds gather. More specifically, the likelihood of accidents increases when the crowd density exceeds a turbulence threshold of 5-6 /m2. Meanwhile, festivals and events, which have become more frequent and are promoted through social media, garner people from near and far to a specific location. Besides, as cities grow, the number of people gathering in one place increases. While stampedes are rare, their impact is significant, and the uncertainty associated with them is high. Currently, there is no scientific system to analyze the risk of stampedes due to crowd concentration. Consequently, to prevent such accidents, it is essential to prepare for crowd disasters that reflect social changes and regional characteristics. Hence, this study proposes using digital topographic maps and crowd-density risk simulations to develop a 3D model of the region. Specifically, the crowd density simulation allows for an analysis of the density of people walking along specific paths, which enables the prediction of danger areas and the risk of crowding. By using the simulation method in this study, it is anticipated that safety measures can be rationally established for specific situations, such as local festivals, and preparations may be made for crowd accidents in downtown areas.

Safety Improvements of Guardrail Coating Vehicle Using FMECA and HAZOP (FMECA와 HAZOP을 활용한 가드레일 코팅차량의 안전성 향상)

  • U.P. Chong;H.C. Park;B.C. Ahn;Y.S. Park;D.S. Han;H.J. Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.3
    • /
    • pp.73-81
    • /
    • 2023
  • This study uses FMECA (Failure Modes, Effects, and Criticality Analysis) and HAZOP (Hazard and Operability), which are widely applied in industrial areas, among risk assessment methods, and applies them to the same system. While FMECA evaluates system failure conditions and analyzes risks, HAZOP evaluates the system comprehensively by evaluating operational risks that may occur based on system parameters. According to data released by the Ministry of Land, Infrastructure and Transport, as of December 2021, the length of roads in Korea is 113,405 km, and the repair of guardrails that have expired must be fixed urgently in terms of traffic safety. Replacing all of these guardrails with new ones requires a very large cost, but if the guardrails are repaired with a vehicle equipped with the G-Save method, carbon emissions are reduced, the repair period is shortened, and great economic benefits can be obtained. However, risk assessment for guardrail coating vehicles has not been done so far. Focusing on this point, this study aims to evaluate the risk of these coating vehicles and describe the results. Finally, we found that the Risk Priority Numbers(RPN) in the FMECA risk assessment were greatly reduced, and 6 risk factors from HAZOP risk assessment and actions were taken.