• Title/Summary/Keyword: Risk map

Search Result 435, Processing Time 0.024 seconds

IDENTIFICATION OF EROSION PRONE FOREST AREA - A REMOTE SENSING AND GIS APPROACH

  • Jayakumar, S.;Lee, Jung-Bin;Enkhbaatar, Lkhagva;Heo, Joon
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.251-253
    • /
    • 2008
  • Erosion and landslide cause serious damage to forest areas. As a consequence, partial or complete destruction of vegetation occurs, which leads to many cascading problems. In this study, an attempt has been made to identify the forest areas, which are under different risk categories of erosion and landslide, in part of Eastern Ghats of Tamil Nadu. Relevantthematic maps were generated from satellite data, topographical maps, primary and secondary data and weights to each map were assigned appropriately. Weighted overlay analysis was carried out to identify the erosionprone forest areas. The result of erosion and landslide prone model reveals that 4712 ha(17%) of forest area is under high risk category and 15879 ha(58.65%) isunder medium risk category. The results of spatial modeling would be very much useful to the forest officials and conservationist to plan for effective conservation.

  • PDF

GIS Technology for Environmental Gelolgic Mapping (환경 지질도 작성을 위한 GIS 응용연구)

  • 김윤종;유일현;김원영;신은선
    • The Journal of Engineering Geology
    • /
    • v.4 no.3
    • /
    • pp.321-331
    • /
    • 1994
  • Environmental geologic maps were produced on the cheong-Ju area using GIS technique. They are GIS maps on land management and regional land use planning. In the last year, the model of environmental geologic map was established, and the digital database was constructed by environmental and geotechnical data collected form various sources. The special maps for environmental geologic study were also pnoduced ; landslide hazard and risk map, cut & fill map, actual run-off map and engineering geological map. The maps are secondary models (sub-model) in order to create final environmental geologic map. Finally, Environmental Geologic Unit(EGU) was evaluated for regional land use planning and land management by EGIS(Environmental Geologic Inforafion System). This unit is very important in order to assess environmental geologic impact on large construction works and detailed road design etc.

  • PDF

Analyzing the Disaster Vulnerability of Mt. Baekdusan Area Using Terrain Factors (지형 요소를 고려한 백두산 지역의 위험도 분석)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Lee, Young-Cheol;Lee, Kyu-Hwan;Kim, In-Soo
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.605-614
    • /
    • 2013
  • Most steep slope failures tend to take place in geographically unstable areas. Mt. Baekdusan is known as a potentially active volcano in a typical mountainous terrain. This study prepared a digital elevation model of Mt. Baekdusan area and created a hazard map based on topographical factors and structural lineament analysis. Factors used in vulnerability analysis included geographical data involving aspect and slope distribution, as well as contributory area of upslope, tangential gradient curvature, profile gradient curvature, and the distribution of wetness index among the elements that comprise topography. In addition, the stability analysis was conducted based on the lineament intensity map. Concerning the disaster vulnerability of Mt. Baekdusan region, the south and south west area of Mt. Baekdusan has a highest risk of disaster (grade 4-5) while the risk level decreases in the north eastern region.

FLO-2D Simulation of the Flood Inundation Zone in the Case of Failure of the Sandae Reservoir Gyeongju, Gyeongbuk (댐붕괴 모형과 FLO-2D를 연동한 산대저수지 붕괴 침수 모의)

  • Go, Dae-hong;Lee, Khil-Ha;Kim, Jin-Man;Kim, Sung-Wook
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.449-458
    • /
    • 2015
  • The compilation of a flood hazard map is an efficient technique in managing areas at risk of flooding in the case of a dam-break. A scenario-based numerical modeling approach is commonly used to compile a flood hazard map related to dam-break and to determine the model parameters that capture peak discharge, including breach formation and progress, which are important in the modeling method. This approach might be considered less reliable if an existing model is used without local validation. In this study, a dam-break model is linked to a routing model to identify flood-risk areas in the case of failure of the Sandae Reservoir Gyeongju, Gyeongbuk. Model parameters are extracted from a DEM, and maps of land use and soil texture. The simulation results are compared with on-site investigations in terms of inundation and depth. The model reproduces the inundation zone with reasonable accuracy.

Development of Image-map Generation and Visualization System Based on UAV for Real-time Disaster Monitoring (실시간 재난 모니터링을 위한 무인항공기 기반 지도생성 및 가시화 시스템 구축)

  • Cheon, Jangwoo;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.407-418
    • /
    • 2018
  • The frequency and risk of disasters are increasing due to environmental and social factors. In order to respond effectively to disasters that occur unexpectedly, it is very important to quickly obtain up-to-date information about target area. It is possible to intuitively judge the situation about the area through the image-map generated at high speed, so that it can cope with disaster quickly and effectively. In this study, we propose an image-map generation and visualization system from UAV images for real-time disaster monitoring. The proposed system consists of aerial segment and ground segment. In the aerial segment, the UAV system acquires the sensory data from digital camera and GPS/IMU sensor. Communication module transmits it to the ground server in real time. In the ground segment, the transmitted sensor data are processed to generate image-maps and the image-maps are visualized on the geo-portal. We conducted experiment to check the accuracy of the image-map using the system. Check points were obtained through ground survey in the data acquisition area. When calculating the difference between adjacent image maps, the relative accuracy was 1.58 m. We confirmed the absolute accuracy of the image map for the position measured from the individual image map. It is confirmed that the map is matched to the existing map with an absolute accuracy of 0.75 m. We confirmed the processing time of each step until the visualization of the image-map. When the image-map was generated with GSD 10 cm, it took 1.67 seconds to visualize. It is expected that the proposed system can be applied to real - time monitoring for disaster response.

Construction of Earthquake Disaster Management System Based on Seismic Performance Evaluation of Architectural Structure (건축물 내진성능평가에 의한 지진재해관리정보체계 구축)

  • Kim, Seong-Sam;Cho, Eun-Rae;Yoon, Jeong-Bae;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.3
    • /
    • pp.59-67
    • /
    • 2007
  • This paper proposes potentialities of constructing the information system for earthquake hazard management which can manage and analyse earthquake risk and hazard systematically. The experimental results as well as architectural structure investment data for seismicity assessment are built in database and connected with GIS for assessing earthquake safety of building in urban area. For earthquake-resistant performance assessment, we collected and classified building structural data according to assessment criteria using building register, architectural map, digital map, and then complemented database with field survey data. We also suggest GIS-based information system can cope with and manage earthquake hazard effectively, as evaluating earthquake risk by performing detailed earthquake-resistant assessment and determining final assessment scores. The assessment should be processed quickly and accurately by integrating the earthquake hazard information management system with modularization of assessment procedure and method in the future.

  • PDF

Efficient Construction Method of Topographic Data for Flood Mapping Using Digital Map (수치지형도를 활용한 홍수지도 제작용 지형자료의 효과적인 구축방법 연구)

  • Lee, Geun-Sang;Koh, Deuk-Koo;Kim, Woo-Gu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.1
    • /
    • pp.52-61
    • /
    • 2004
  • Korea Water Resources Corporation carried out LiDAR survey to construct detailed terrain data for flood mapping and it is expected that much money is required in flood mapping of all over the country. Therefore, it is desirable to use NGIS digital map to construct preliminary modelling data for selection of flood mapping area. And the analysis of DEM error with respect to scale of digital map is necessary for the sake of applying digital map as the input data of flood mapping. We compared DEM from digital map with DEM from LiDAR survey. Especially we analyzed DEM error characteristics that is occurred with respect to the interpolation method that is used to construct DEM from TIN of digital map. As a result of analysis, digital map(1:1,000) showed smaller error than digital map(1:5,000) and DEM applying linear interpolation showed smaller error than DEM applying quintic interpolation. Especially, variation of DEM error by cell resolution was evaluated as very slight because urban district was composed of gentle slope.

  • PDF

Study on the Selection and Application of a Spatial Analysis Model Appropriate for Selecting the Radon Priority Management Target Area (라돈 우선관리 대상 지역 선정에 적합한 공간분석모형의 선정 및 활용에 관한 연구)

  • Nam Goung, Sun Ju;Choi, Kil Yong;Hong, Hyung Jin;Yoon, Dan Ki;Kim, Yoon Shin;Park, Si Hyun;Kim, Yoon Kwan;Lee, Cheol Min
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.1
    • /
    • pp.82-96
    • /
    • 2019
  • Objective: The aims of this study were to provide the basic data for establishing a precautionary management policy and to develop a methodology for selecting a radon management priority target area suitable for the Korean domestic environment. Methods: A suitable mapping method for the domestic environment was derived by conducting a quantitative comparison of predicted values and measured values that were calculated through implementation of two models such as IDW and RBF methods. And a qualitative comparison including the clarity of information transmission of the written radon map was carried out. Results: The predicted and measured values were obtained through the implementation of the spatial analysis models. The IDW method showed the lowest in the calculated mean square error and had a higher correlation coefficient than the other methods. As results of comparing the uncertainty using the jackknife concept and the concept of error distance for comparison of the differences according to the model interpolation method, the sum of the error distances showed a modest increase compared with the RBF method. As a result of qualitatively comparing the information transfer clarity between the radon maps prepared with the predicted values through the model implementation, it was found that the maps plotted using the predicted values by the implementation of the IDW method had greater clarity in terms of highness and lowness of radon concentration per area compared with the maps plotted by other methods. Conclusions: The radon management priority area suggests selecting a metropolitan city including an area with a high radon concentration.

Recommendation for selecting the optimal stabilizing agent for in situ stabilization of metal-contaminated soil at difficult-to-remediate sites (정화곤란부지 중금속 오염토양의 원위치 안정화를 위한 최적 안정화제 선정에 관한 제언)

  • Kim, Haeun;Lee, Jaehui;Yoon, Sang-Gyu;An, Jinsung
    • Journal of Urban Science
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • 정화곤란부지 내 중금속(Pb) 오염토양의 원위치 안정화를 위한 최적 안정화제 선정의 일환으로, 문헌조사를 통해 선정한 3종의 후보 안정화제(mono ammonium phosphate (MAP), iron(III) phosphate (IP) 및 gypsum)에 대해 납에 대한 등온흡착실험을 실시했다. Langmuir 등온흡착식을 적용하여 산출된 각 안정화제의 납 최대흡착량은 MAP, IP 및 gypsum에서 각각 391, 42.4 및 32.2 mg/g으로 나타났다. Freundlich 상수(KF; 단위 = mg(1-1/n)·L1/n/g) 또한 MAP, IP 및 gypsum에서 각각 72.8, 24.5 및 14.3을 나타내, 최대흡착량 및 흡착 친화도 측면에서 MAP가 납의 안정화에 가장 적합함을 확인했다. 3종의 후보 안정화제가 적용된 납 오염토양에 대해 fluorescein diacetate (FDA) 가수분해효소 활성도 평가를 실시하여 안정화제의 적용이 토양의 생태학적 기능에 미치는 영향을 정량화했다. 안정화를 진행하지 않은 대조군 토양의 경우 FDA 가수분해효소의 활성을 지시하는 토양중 fluorescein의 농도가 0.239 mg/g·h을 나타냈으며, MAP, IP 및 gypsum으로 안정화된 토양에서는 각각 0.026, 0.135 및 0.073 mg/g·h를 나타냈다. 안정화제를 첨가한 모든 토양에서 대조군에 비해 FDA 가수분해효소의 활성이 감소했으며, 이는 안정화제 첨가로 인한 토양 염류농도의 증가에 따른 염 스트레스의 영향으로 추정된다. 정화곤란부지 위해도 저감조치로서의 안정화 공법 고려 시, 안정화 처리 이후 대상 중금속이 안정한 형태로 유지되어 낮은 화학적 추출능을 나타내는지 여부도 중요하지만, 잔류 중금속 또는 주입한 안정화제 함유물질 및 중화제 등이 야기할 수 있는 토양 생태계에의 부정적 영향 또한 반드시 고려해야 함을 확인했다.

Development of a Collision Risk Assessment System for Optimum Safe Route (최적안전항로를 위한 충돌위험도 평가시스템의 개발)

  • Jeon, Ho-Kun;Jung, Yun-Chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.670-678
    • /
    • 2018
  • In coastal waters where the traffic volume of the ship is high, there is a high possibility of a collision accident because complicated encounter situations frequently occurs between ships. To reduce the collision accidents at sea, a quantitative collision risk assessment is required in addition to the navigator's compliance with COLREG. In this study, a new collision risk assessment system was developed to evaluate the collision risk on ship's planned sailing routes. The appropriate collision risk assessment method was proposed on the basis of reviewing existing collision risk assessment models. The system was developed using MATLAB and it consists of three parts: Map, Bumper and Assessment. The developed system was applied to the test sea area with simple computational conditions for testing and to actual sea areas with real computational conditions for validation. The results show the length of own ship, ship's sailing time and sailing routes affect collision risks. The developed system is expected to be helpful for navigators to choose the optimum safe route before sailing.