• 제목/요약/키워드: Riparian vegetation increase

검색결과 23건 처리시간 0.029초

Analysis of the riparian vegetation expansion in middle size rivers in Korea (중규모 하천에서의 식생 증가 현황에 대한 분석)

  • Kim, Won;Kim, Sinae
    • Journal of Korea Water Resources Association
    • /
    • 제52권spc2호
    • /
    • pp.875-885
    • /
    • 2019
  • The expansion of riparian vegetation in middle size rivers in Korea had been analyzed in this study. Seom River with dam, Cheongmi River without dam, and Naesung River with no operating dam in the upstream was investigated for the 1 km to identify the expansion of riparian vegetation through the aerial photograph analysis. As a results, we found that the rate of vegetation area is 54.7% in Seom River, 77.5% in Cheongmi River, and 49.7% in Naesung River. The vegetation area had been increased in 3 rivers, and the expansion rate since 2010 is very high nearly up to 2 times (17 times in Naesung River). Sandbar and open-water area, however, have been decreased in the same rate with the riparian vegetation expansion. It could be concluded that vegetation increase trend is clear in rivers regardless of location and dam existence. Further researches are necessary to find out the causes to establish the countermeasures because the increase of vegetation will change the physical system as well as biological system of river.

An Analysis of Riparian Vegetation Distribution Based on Physical Soil Characteristics and Soil Moisture Content -Focused on the Relationship between Soil Characteristics and Vegetation- (토양의 물리적 특성 및 수분조건에 다른 하반식물의 분포 -토양환경과 식생과의 관계를 중심으로-)

  • 안홍규
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • 제28권5호
    • /
    • pp.39-47
    • /
    • 2000
  • This study is to investigate the conditions closely related to the establishment of vegetation in the riparian zone: the soil condition, an important factor along with climate and light. Especially, the soil structure of the microtopographical formations in the specific area known as the riparian microtopographical zone investigated. In addition, the effect of the riparian microtopographical features on the ground water level, soil moisture content, and vegetation was studied. The results of this study are as follows; 1) At all sample sites, below the sand layer, a gravel layer is always present. This is the result of past floods. 2) Although Salix koreensis experiences frequent disturbances such as increase in river level and floods, this vegetation establishes itself in the most secure are in the microtopographical zone. 3) The growth of Phragmites japonica is closely related to the underground water level. 4) It is clear that Miscanthus sacchariflorus grows concentrated in dry areas. 5) The soil accumulation conditions differ according to the soil moisture content of each microtopgraphical feature. Accordingly, the moisture content of the soil is clearly different within the microtopographical zone. The continuous and long-term investigation and research on the relation of riparian reproduction and the relevance with location surrounding factors are necessary in the future.

  • PDF

Distribution Characteristics of Riparian Vegetation in the Mid and Lower Reaches of the Nakdong River, Korea (낙동강 중.하류지역의 수변 식생 분포 특성)

  • Yeo, Un-Sang;Lee, Yong-Min;Kim, Ki-Sup;Sung, Ki-June;Kang, Dae-Seok;Lee, Suk-Mo
    • Journal of Environmental Science International
    • /
    • 제17권2호
    • /
    • pp.149-162
    • /
    • 2008
  • Aquatic and riparian vegetation of river ecosystems are very important both in ecological and management perspectives. Vegetation surveys were conducted to understand the characteristics of riparian vegetation in the mid and lower reaches of the Nakdong River, Korea. A total of 68 families and 260 species were identified at eleven survey sites. The numbers of taxa were similar to those reported in a previous survey in 1996,but the percentage of naturalized plants increased more than two times compared to that in the previous survey. Survey sites near Yangsan Bridge and Nambu Park in Yangsan showed the highest percentage of naturalized plant species. Urbanization indices of the survey sites were high at 18.8% on average. Therophytes were the most dominant plant life form at the survey sites with 39.2% of total plants identified, followed by phanerophytes (19.2%), hemicryptophytes (18.9%), aquatic plants (13.9%), cryptophytes (5.8%), and chamaephytes (3.1%). The relative composition of hemicryptophytes decreased whereas those of therophytes and chamaephytes increased compared to those in the survey in 1996. This may be due to increase in dryness of riparian soils or degradation of riparian areas. Plant compositions at sites near Jeokpo Bridge and Hwoicheon suggest that the composition and distribution of riparian vegetation are affected by land use pattern surrounding riparian areas or human accessibility to the areas.

Mitigation Effect of Watershed Land Use due to Riparian Vegetation on Stream Water Quality (수변림으로 인한 유역 토지이용이 하천 수질에 미치는 관계 완화효과 연구)

  • Hyeonil Kwon;Jong-Won Lee;Sang Woo Lee
    • Korean Journal of Ecology and Environment
    • /
    • 제55권4호
    • /
    • pp.320-329
    • /
    • 2022
  • Urban areas in watersheds increase the impervious surface, and agricultural areas deteriorate the water quality of rivers due to the use of fertilizers. As such, anthropogenic land use affects the type, intensity and quantity of land use and is closely related to the amount of substances and nutrients discharged to nearby streams. Riparian vegetation reduce the concentration of pollutants entering the watershed and mitigate the negative impacts of land use on rivers. This study analyzes the data through correlation analysis and regression analysis through point data measured twice a year in spring and autumn in 21 selected damaged tributary rivers within the Han River area, and then uses a structural equation model to determine the area land use. In the negative impact on water quality, the mitigation effect of riparian vegetation was estimated. As a result of the correlation analysis, the correlation between the agricultural area and water quality was stronger than that of the urban area, and the area ratio of riparian vegetation showed a negative correlation with water quality. As a result of the regression analysis, it was found that agricultural areas had a negative effect on water quality in all models, but the results were not statistically significant in the case of urban areas. As a result of the model estimated through the structural equation, BOD, COD, TN, and TP showed a mitigation effect due to the accumulation effect of river water quality through riparian vegetation in agricultural areas, but the effect of riparian vegetation through riparian vegetation was found in urban areas. There was no These results were interpreted as having a fairly low distribution rate in urban areas, and in the case of the study area, there was no impact due to riparian forests due to the form of scattered and distributed settlements rather than high-density urbanized areas. The results of this study were judged to be unreasonable to generalize by analyzing the rivers where most of the agricultural areas are distributed, and a follow-up to establish a structural equation model by expanding the watershed variables in urban areas and encompassing the variables of various factors affecting water quality research is required.

Experimental analysis of meandering channel development processes with floodplain vegetation (홍수터 식생에 의한 저수로 사행 발달과정 실험적 분석)

  • Jang, Chang-Laea
    • Journal of Korea Water Resources Association
    • /
    • 제56권12호
    • /
    • pp.895-903
    • /
    • 2023
  • This study investigates the impact of riparian vegetation in the floodplain on channel stability, changes in bend curvature, and meandering channel migration. In channels with riparian vegetation, over time, meander width remains relatively constant, but selective bank erosion leads to meander development and downstream movement. During this process, bank erosion and changes in the riverbed are not significant, and the channel maintains relatively constant conditions with reduced sediment discharge and minimal variability. As the density of vegetation increases, bank erosion rates decrease. The erosion rates along the riverbanks increase with the density of vegetation on the floodplain, thus affecting the development of meanders. This factor notably contributes to enhancing riverbank stability and influencing channel changes through floodplain vegetation. Bank erosion rates and dimensionless bend curvature are greatest when there is no riparian vegetation but decrease in conditions with vegetation. Furthermore, the relationship between lateral migration rate and dimensionless bend curvature is similar to that of bank erosion rates. Therefore, riparian vegetation enhances channel stability, influencing bank erosion, meander curvature, and meander migration.

Effects of Water Level Change on Wetland Vegetation in the Area of Riparian Forest for Dam Construction Period -Focused on the Hantan River Dam- (댐 건설 기간 수위변화가 하반림 일대 습지 식생에 미치는 영향 -한탄강댐을 사례로-)

  • Park, Hyun-Chul;Lee, Jung-Hwan;Lee, Gwan-Gyu
    • Journal of Forest and Environmental Science
    • /
    • 제30권1호
    • /
    • pp.76-84
    • /
    • 2014
  • This study was performed to monitor the effects of water level change on changes of landscape, vegetation community, and species diversity of riparian forest. Hantan river dam, study area, has been constructed in the area of Chansoo-myeon, Pocheon-si and Yeoncheon-eup, Yeoncheon-gun, Gyeonggi-do, which is a dam for flood control only in flooding season. Landscape changes were notable after the construction of coffer dam, and the changes were caused by water level increase in areas of riparian forests which consisted of mainly withered willow as a dominant species in the flooding season. It changed vegetation communities of riparian forest from Phragmites japonica and Salix koreensis to Phragmites japonica. Species diversity index was lowest in 2010 when the coffer dam was constructed and showed an increasing trend later. Thus, this study is well in agreement with a previous report that plants of the genus Salix wither by muddy water during flooding and also suggests, controlling water level of river and prediction of water level change's effects should be considered when any facilities are planned.

Cause-based Categorization of the Riparian Vegetative Recruitment and Corresponding Research Direction (하천식생 이입현상의 원인 별 유형화 및 연구 방향)

  • Woo, Hyoseop;Park, Moonhyeong
    • Ecology and Resilient Infrastructure
    • /
    • 제3권3호
    • /
    • pp.207-211
    • /
    • 2016
  • This study focuses on the categorization of the phenomenon of vegetative recruitment on riparian channels, so called, the phenomenon from "white river" to "green river", and proposes for the corresponding research direction. According to the literature review and research outputs obtained from the authors' previous research performed in Korea within a limited scope, the necessary and sufficient conditions for the recruitment and retrogression of riparian vegetation may be the mechanical disturbance (riverbed tractive stress), soil moisture (groundwater level, topography, composition of riverbed material, precipitation etc.), period of submergence, extreme weather, and nutrient inflow. In this study, two categories, one for the reduction in spring flood due to the change in spring precipitation pattern in unregulated rivers and the other for the increase in nutrient inflow into streams, both of which were partially proved, have been added in the categorization of the vegetative recruitment and retrogression on the riparian channels. In order to scientifically investigate further the phenomenon of the riparian vegetative recruitment and retrogression and develop the working riparian vegetative models, it is necessary to conduct a systematic nationwide survey on the "white to green" rivers, establishment of the categorization of the vegetation recruitment and retrogression based on the proof of those hypotheses and detailed categorization, development of the working mathematical models for the dynamic riparian vegetative recruitment and retrogression, and adaptive management for the river changes.

A Study on the Flora and Vegetation Changes in the Riparian Zones of Han River Watershed (한강 수변구역의 식물상 및 식생변화에 관한 연구)

  • Lee, Jong-Mun;Cho, Yong-Hyeon;Kim, Hyun-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • 제22권2호
    • /
    • pp.13-30
    • /
    • 2019
  • The purpose of this study was to investigate changes in vegetation and flora after five years through field surveys data with the Han Gang Watershed Management Committee (2013) data in order to observe natural vegetation changes in the riparian zone of Han River watershed. As a result, the flora of the riparian zone in 2012 were listed total 231 taxa, 66 families, 158 genus, 207 species, 23 varieties, and 1 forms, and in 2017, a total 247 taxa, 74 families, 174 genus, 218 species, 27 varieties, and 2 forms were identified. The number of rare plants decreased from 4 taxa in 2012 to 2 taxa in total in 2017, and the number of endemic plants increased from 1 taxa to 3 taxa. The number of specific plants by floral region decreased from 21 taxa (9.1% of all 231 taxa of flora) in 2012 to 16 taxa (6.5% of all 247 taxa of flora) in 2017. The total number of naturalized plants is analyzed to increase from 35 taxa, a naturalization rate of 15.15% (all 231 taxa of flora) and urbanization index of 11.2% (all 312 taxa of naturalized plants) in 2012 to 44 taxa a naturalization rate of 17.8% (all 231 taxa of flora) and urbanization index of 14.1%(all 312 taxa of naturalized plants) in 2017. The ecosystem disturbance species showed an increase in both number of species and cover degree grades, indicating that the riparian zone changed in a negative direction.

Riparian Vegetation Expansion Due to the Change of Rainfall Pattern and Water Level in the River (강우 발생 패턴변화와 하천 수위 변화가 하천식생 발생에 미치는 영향)

  • Kim, Won;Kim, Sinae
    • Ecology and Resilient Infrastructure
    • /
    • 제7권4호
    • /
    • pp.238-247
    • /
    • 2020
  • This study aims to examine the causes of the rapid expansion of riparian vegetation in river channels in recent years. Accordingly, the changes in the monthly rainfall were analyzed at 19 locations over the period of 1984 to 2018. Moreover, the changes in the water levels of the target river sections of Seom River, Cheongmi River, and Naeseong River were analyzed. The results showed that rainfall increased by 30% in April and decreased by up to 49% in the May-September period since 2012. Between 2012 and 2018, when rainfall decreased, the inundation time of the floodplains of the target rivers decreased considerably. The floodplains of Seom River and Cheongmi River were not inundated since 2012 and 2013, respectively. In the case of Naeseong River, the inundation time of the low-water channel drastically decreased since 2013, and there was no inundation in 2015. Consequently, riparian vegetation settled rapidly on the floodplain without any disturbance and continued to expand. The settling and expansion of riparian vegetation reduce the flood capacity of the river channel and can also lead to the loss of the water ecosystem due to terrestrialization.

Vegetation survey in nature-friendly small streams for each protection method (자연형 소하천의 호안공법별 식생분포 조사)

  • Lee, Kang-Suk;Park, Jin-Ki;Yeon, Gyu-Bang;Park, Jong-Hwa
    • Korean Journal of Agricultural Science
    • /
    • 제38권2호
    • /
    • pp.315-324
    • /
    • 2011
  • Riparian vegetation distribution patterns and diversity relative to various fluvial geomorphic channel patterns, stream bank stabilization methods, and stream flow processes are described and interpreted for selected nature-friendly small stream bank protection of Goesan, central Korea. Idong Stream Pilot Project, which began in May 2003 and finished in December 2003, was selected to develop effective methods which was nature-friendly stream bank protection. The project aim to maintain or increase stream bank stabilization ecosystem goods and services while protecting downstream and stream bank ecosystem. A number of protecting methods which were a Flight of fieldstone, Vegetation block, Green river block, Stone net, Green environment block, Eco friendly cobble, Vegetation mat and Geo-green cell and Firefly block were applied on the bank of Idong stream. The stream sites have been monitored about vegetation conditions each method in 2007. We selected six points to separately investigate in left and right bank. The main purpose of this study was to find out suitable methods and to improve stream restoration techniques for ecosystem. On the stream bank, H environment block method (9.7) was the highest average of vegetation coverage and Firefly block method (3.87) was the lowest average in applied methods.