• Title/Summary/Keyword: Riparian system

Search Result 73, Processing Time 0.019 seconds

Analysis of Total Nitrogen Reduction Efficiency with Established Riparian Buffer System using SWAT-REMM Model in Bonggok Watershed (SWAT-REMM 모형을 이용한 봉곡천 유역의 수변림 조성에 따른 총 질소 저감 효율 분석)

  • Ryu, Jichul;Kang, Hyunwoo;Kim, Nam Won;Jang, Won Seok;Lee, Ji Won;Moon, Jong-pil;Lee, Kyu-seung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.910-918
    • /
    • 2010
  • In recent years, riparian buffer system has been known as one of the effective best management practices. However, establishment of riparian buffer system in aspect of plant species and its position in the riparian buffer zone has not been investigated due to lack of efficient evaluation method for the analysis of water quality improvement with established riparian buffer system. To solve this problem, the SWAT-REMM prototype was developed by the researchers in Canada. But, SWAT-REMM model can not consider the $NO_3-N$ load into riparian buffer system through subsurface flow. Thus to solved this problem, Fortran code of SWAT-REMM model was modified. This modified SWAT-REMM system was applied to the Bonggok watershed. Three riparian buffer scenarios, 15 m, 10 m, 5 m width for tree and grass, were made to evaluate the effects of riparian buffer system on water quality improvement. Reduction efficiency of T-N by riparian buffer system of 15 m wide was the greatest (6 ~ 37%, depending on subwatershed characteristics) among 3 scenarios. It indicates that the reduction efficiency of T-N load has increasing-tendency, as buffer width increasing. The results obtained from the analysis showed that wide buffer zones are found to be more effective in reducing non-point pollutant than narrow buffer zones in the riparian buffer zone system. Hence, the SWAT-REMM model could be efficiently used for evaluation and design the most effective riparian buffer systems to reduce pollutant loads to the watershed although many limitations still exist in SWAT-REMM model.

Application of Landscape Ecology to Watershed Management : How can We Restore Ecological Functions in Fragmented landscape\ulcorner (유역관리에서 경관생태학의 응용 : 절개된 경관의 생태적 기능을 어떻게 회복시킬 수 있을까\ulcorner)

  • Nakamura, Futoshi
    • The Korean Journal of Ecology
    • /
    • v.21 no.4
    • /
    • pp.373-382
    • /
    • 1998
  • This paper describes the ecological structure and function of riparian zone, and their historical changes with land-use. The riparian zone consists of valley floor landform and riparian vegetation. The functions discussed are attenuation of sunlight energy, input of leaves and needles, contribution of woody debris to streams, and retention of flowing material out of transport. These primary functions directly or indirectly influence water and sediment qualities of streams, bars and floodplains, and thereby aquatic biota. Temporal changes in a hydrological system and riparian ecosystem were examined with reference to land-use conversin in order to understand the linkages between these two systems in Toikanbetsu River. The influences of channelization and land-use on discharge of suspended sediment and wetland vegetation was also investigated in Kushiro Marsh. These two examples suggested that the ecological functions of riparian zone have been degraded as flood control and reclamation works have expanded in the past twenty years The author proposes river restoration planning by preserving or creating landscape elements based on the concepts of sustaining physical and ecological linkages.

  • PDF

Effects of Microtopography on the Development of Riparian Vegetation in Stream Corridors (하천통로에서 미세 지형 발달이 하천 식생에 미치는 영향)

  • 정경진;김동엽
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.4
    • /
    • pp.39-49
    • /
    • 1999
  • Urban streams have, recently, been straightened and widened to alleviate flooding problem. As a result, the stream have been modified inadvertently for ecological functions and microtopography. In this study, we investigated riparian vegetation and microtopography of the tributaries of Han River before and after the monsoon rain in summer. The purpose of this study was to relate the stream microtopography to the distribution of riparian vegetation. The stream microtopography was investigated for its scale and pattern. Vegetation was investigated from 131 plots by Braun-Blanquet method. The distribution of riparian vegetation was significantly correlated with the stream microtopography. Various herbaceous species occurred at stream bank slop, high terrace and channel side. However, at channel side and concave part of terrace where soils were in high moisture level, only a few wetland species were dominated. The complexity of the microtopography in the stream corridors led to heterogeneous riparian vegetation. The vegetation showed more stability against flooding at the stream corridors with natural and complex microtopography than at the urban-type stream corridors with simple topographical features. The results showed that the development of riparian vegetation was influenced by the changes in microtopography, which was primarily determined by the shape and characteristics of channel. It seemed that a close-to-nature river system would be restored more readily with an understanding of microtopographical features affecting the distribution of riparian vegetation.

  • PDF

Riparian forest and environment variables relationships, Chichibu mountains, central, Japan (일본 Chichibu산지 계반림의 입지환경)

  • Ann, Seong-Won
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.93-100
    • /
    • 2003
  • In most mountainous parts of the temperate zone of Japan along the Pacific Ocean, some climatic climax forests, whose main dominant species is Fagus crenate, F. japonica or Quercus mongolica var. grosseserrata, are distributed. In the riparian regions of the zone, however, there appear summer green forests composed of the different species from the climatic climax forests. Climate plays an important role in determining the overall distribution of vegetation, but some environmental factors, i.e., topography, soil type, soil moisture content, etc. have a great influence on vegetation formation. Riparian forests seem to be controlled by various geomorphologic disturbances, such as landslide, soil erosion and accumulation. The study aims to present the relationships among vegetation, soils and landforms in the process of determining riparian forests dominated by Fraxinus platypoda and Pterocarya rhoifolia establishment in the mountainous region of central Japan. The study area extends an area of 302 ha with a range of elevation between 925 m and 1,681 m at the Chichibu mountains. The landforms were corditied at sampling grids (25 $\times$ 25 m, n = 4,843) using a hierarchical system, and a brief description of the forest soil classification was also given. The mutual relationship analysis indicated that forest soils and landforms play a significant role in determining the geomorphological process of riparian forest, and shaping the ultimate pattern of vegetation. At the study area, riparian forests were mainly found on the $B_E$ forest soil type and steep slopes ( > 30$^{\circ}$) at convex slopes along the streams. On the other hand, the direction of slopes did not have a significant impact on the establishment of the riparian forests. A mosaic of patchy distribution of those riparian forests on the slightly wetter $B_E$ forest soil type was one of the characteristic features of the study area. This particular soil which contained large talus gravels was found on the land formed by erosion and deposition of landslide.

Distribution of riparian vegetation in Ian Stream (이안천의 식생분포)

  • Kim, Ho-Joon;Lee, Hye-Keun;Choi, Kwang-Soon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1274-1279
    • /
    • 2005
  • The complex vegetation and plant species distributions within riparian corridors influence plant species diversity patterns at both local and regional scales and further reflect both natural and anthropogenic disturbances. Because of these characteristics, riparian zones are often the ecosystem level component that are most sensitive to changes of the surrounding environment; they provide early indications of environmental change and can be viewed as the important source in the watershed. The objectives of this study were two concepts: first, document the composition and dominance of plant communities of riparian areas in the stream, second, compare species composition and temporal diversity between stations in riparian areas of the Ian Stream. The flora was composed to total 158 kinds of the vascular plants as 49 family, 54 genera, 145 species, 12 varieties, 1 forma When the naturalized plant were applied to the recent classification system 280 kinds, the naturalization rate was $10.8\% higher than that of mean value($10.3\%$) of the Korean mountain district. Furthermore, urbanization index (UI) was $6.1\%$. The dominant vegetation communities were distributed in the habitats of three compartments from upstream to downstream. The vegetations were included Phragmites japonica, Salix gracilistyla, S. hulteni and Robinia pseudo-acacia in the riparian area, and Persicaria sieboldii, Stellaria alsine var. undulata, Draba nemorosa var. hebecarpa, Capsella bursa-pastoris, Lepidium apetalum, Bidens frondosa, Trigonotis peduncularis and Hemistepta lyrata in the sandbank or the riparian area, and Equisetum arvense, Humulus japonicus, Persicaria perfoliata, Trifolium repens, Artemisia princeps var. orientalis, Lactuca indica var. laciniata, Avena fatua, Agropyron yesoense, Oenothera odorata, Viola mandshurica, Rumex crispus in banksides, respectively.

  • PDF

Impacts of Aquatic and Riparian Environmental Factors on Eurasian Otter (Lutra lutra) Presence Characteristics in the Nakdong River Basin (낙동강 권역의 하천 수면공간 및 수변환경이 수달의 출현에 미치는 영향분석)

  • Shin, Geehoon;Rho, Paikho
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1341-1353
    • /
    • 2017
  • This study aimed to identify the aquatic and riparian factors associated with the presence/absence of the Eurasian otter in the Nakdong river basin, where the species is relatively more abundant than other otter species. Environmental factors and presence records were collected. Geographical Information System technology and chi-square test were used to compare environmental gradients in aquatic and riparian factors between presence and absence sites. Aquatic habitat attributes were evaluated with natural riverside sandbars and channel crossing artificial structures, the ratio of channel width to alluvial plain width, riverbed substrate, and flow diversity. Riverbank characteristics, bank materials, man-made embankment types, and land use/land cover of inland and riverside areas were selected as riparian habitat attributes. Compared to the aquatic attributes, riparian attributes were highly significant when assessing otter presence and absence sites, suggesting that conservation of suitable riparian areas to provide maternity and resting areas for otter species is essential in the Nakdong river basin. None of the aquatic attributes examined were statistically significant when evaluating otter presence or absence. These results indicate that the presence of suitable riparian area for resting and reproduction habitats is more critical to the presence of Eurasian otter than food availability in aquatic areas. To inform implementation of effective conservation actions, broad-scale factors, such as watershed attributes, would be needed to further assess habitat conditions of the Eurasian otter.

Vegetation Structure and Distribution of Exotic Plants with Geomorphology and Disturbance in the Riparian Zone of Seunggi Stream, Incheon (인천 승기천의 하안지대에서 지형과 교란에 따른 외래식물의 분포와 식생 구조)

  • Sin, Dong-Ho;Jo, Gang-Hyeon
    • The Korean Journal of Ecology
    • /
    • v.24 no.5
    • /
    • pp.273-280
    • /
    • 2001
  • We investigated the flora and vegetation structure of exotic plants along stream geomorphology and disturbance factors in the riparian zone of Seunggi stream, Incheon. Total 53 exotic plant species were found in the riparian corridors of Seunggi stream. The percentage of exotics ranged from 25% to 33% of total species richness, and its mean value was 24% in the whole riparian area. The percentage of exotics reflected the vulnerability of riparian zones to plant invasions by disturbances, and it could be used as an indicator of riparian system dysfunction. The distinct distribution patterns of exotic plants did not found in the lateral topographic features of the stream. Invasion and proliferation of the exotic plants were somewhat remarkable at terraces and bank slopes of the stream. Among various disturbance factors, plowing and trampling were important on the invasion of exotic plant species of Seunggi stream.

  • PDF

A Study on the Land Purchase Priority Measurement of the Riparian Areas in Yeongsan and Seomjin River Basin - Focusing on the Riparian Areas of the Juam Lake - (영산강·섬진강수계 수변구역 토지매수 우선순위 산정에 관한 연구 -주암호 수변구역을 사례로 -)

  • Shim, Yun-Jin;Cha, Jin-Yeol;Park, Yong-Su;Lee, Dong-Jin;Seo, Yun-Hee;Hong, Jin-Pyo;Cho, Dong-Gil
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.173-184
    • /
    • 2014
  • Riparian areas are significant functional grounds for inhabiting ecological system on the river such as the self-regulation of the water quality and the foundation of important corridors. For such functional device to operate, consecutive land purchase scheme that prioritizes targeted areas with high pollutant load rate imposes sustainable development of the ecological riparian belt. The purpose of this study is focused on measuring the methodology for selecting land purchse order before establishing riparian belt in accordance with pollution loading estimation and the basin approach. The Yeongsan and Seomjin river which includes targeted areas of the land purchase have been classified into the large-medium-small(standard basin) influence areas based on their catchment rage, which than sub-divided the research area of Juam lake by 38 small basins and 223 units. Small basins with the high pollution load rates have been assessed as the first prioritized targets. For the second priority, the condition of the point pollutant sources, original area of the targets, original restored area were concerned. The final decision of the land purchase order targeted only those within 50 meter range from the basin. To validate the accumulated data, the on-site investigation went along the targeted zones, which the result shows that all prioritized areas included both point and non-point pollutant sources, and had not a small originally restored areas.

Identifying the Change of Urban Stream Bed Using Real-time Beacon DGPS (실시간 beacon DGPS를 이용한 도시하천의 하상변화 파악)

  • Lee, Kyoo-Seock;Lee, Sang-Hwa;Shin, Dong Hoon;Ahn, Seung-Mahn;Suh, Byung-Key
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • The urban stream include the channel and its adjacent banks, or hillslopes and it consists of various landscape elements. The riparian ecosystem is important to people. Its water is extracted for irrigation and drinking supplies. Biodiversity and many wetland species are protected here. The riparian ecosystem is diverse and needs to be preserved well. So, it is necessary to measure the features of the urban stream accurately to figure out the change of the riparian ecosystem. However, the traditional Electronic Distance Measurement(EDM) surveying is difficult to measure the curvilinear features of the stream - e, g, angle, curve. The beacon Differential Global Positioning System(DGPS) can handle to measure the curvilinear shape. Therefore, the purpose of this study is to measure the change of the river bed in urban stream accurately using realtime beacon DGPS, and ultimately to provide the basic data for identifying the change of the river ecosystem.

A Study on Determination of an Optimum Riparian Buffer Zone Based on Analytical Hierarchy Process (계층분석법을 이용한 적정 수변구역 결정에 관한 연구)

  • Han, Haejin;Park, Seok-Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.555-562
    • /
    • 2004
  • This paper presents the development and application of a riparian buffer zone design model(RBZDM). The model was developed as a decision-making tool for watershed management, by integrating geographic information system(GIS) and analytical hierarchy process(AHP) theory. Several factors for watershed management, such as pollution removal capacity, land aquisition cost, distribution of point and non-point pollution sources, and possibility of new pollution source location, were analyzed based on AHP theory. The vegetated buffer zone width was designed using GIS-based riparian buffer analysis. The developed model was applied to the Kyoungan Stream watershed, which is an important part of Paldang lake catchment area. The Kyoungan stream watershed was divided into sixteen subbasins. Six of them belong to the main stem, where the model was applied. Ten alternatives of buffer zone width and five hierarchial levels were designed. The relative importance and the relative preference were computed by pair-wise comparison of evaluation criteria given in hierarchial levels. The buffer zone width was determined by linear function of the given alternatives and relative preferences. From this study, it was determined that the six buffer zone widths of Kyoungan main stems would be 1,594, 1,744, 1,856, 1,782, 1,338, 1,780 meter, from upstream to downstream.