• Title/Summary/Keyword: Riparian buffer zone model

Search Result 8, Processing Time 0.024 seconds

Efficiency of Riparian Buffer Zone on Removing Sediment Yield Using SWAT Model (SWAT 모형을 이용한 수변완충지대 설정에 따른 토사유출량 저감 효과분석)

  • Choi, Dae-Gyu;Park, Moo-Jong;Kim, Jae-Chul;Kim, Sang-Dan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.111-118
    • /
    • 2008
  • Riparian buffer zone prevents sediment entry into drainage channels or as a protection from runoff and wind erosion. However, Studies about its removing effect according to Riparian buffer zone are shorted now. In this study, using the SWAT model, Byongseong watershed is built on the Arcview GIS. Using the function of the filter strip in SWAT model, it is also examined about the variation of sediment yield. As a simulation result, the case of constructing riparian buffer zones at subbasins near the outlet shows generally high efficiency on removing sediment yield. In addition, according to the scenario analysis of changing riparian buffer zone width, it is thought that 5-10m riparian buffer zone width is the highest efficiency on removing sediment yields generated from Byeongseong watershed.

A Study on Determination of an Optimum Riparian Buffer Zone Based on Analytical Hierarchy Process (계층분석법을 이용한 적정 수변구역 결정에 관한 연구)

  • Han, Haejin;Park, Seok-Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.555-562
    • /
    • 2004
  • This paper presents the development and application of a riparian buffer zone design model(RBZDM). The model was developed as a decision-making tool for watershed management, by integrating geographic information system(GIS) and analytical hierarchy process(AHP) theory. Several factors for watershed management, such as pollution removal capacity, land aquisition cost, distribution of point and non-point pollution sources, and possibility of new pollution source location, were analyzed based on AHP theory. The vegetated buffer zone width was designed using GIS-based riparian buffer analysis. The developed model was applied to the Kyoungan Stream watershed, which is an important part of Paldang lake catchment area. The Kyoungan stream watershed was divided into sixteen subbasins. Six of them belong to the main stem, where the model was applied. Ten alternatives of buffer zone width and five hierarchial levels were designed. The relative importance and the relative preference were computed by pair-wise comparison of evaluation criteria given in hierarchial levels. The buffer zone width was determined by linear function of the given alternatives and relative preferences. From this study, it was determined that the six buffer zone widths of Kyoungan main stems would be 1,594, 1,744, 1,856, 1,782, 1,338, 1,780 meter, from upstream to downstream.

Analysis of Total Nitrogen Reduction Efficiency with Established Riparian Buffer System using SWAT-REMM Model in Bonggok Watershed (SWAT-REMM 모형을 이용한 봉곡천 유역의 수변림 조성에 따른 총 질소 저감 효율 분석)

  • Ryu, Jichul;Kang, Hyunwoo;Kim, Nam Won;Jang, Won Seok;Lee, Ji Won;Moon, Jong-pil;Lee, Kyu-seung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.910-918
    • /
    • 2010
  • In recent years, riparian buffer system has been known as one of the effective best management practices. However, establishment of riparian buffer system in aspect of plant species and its position in the riparian buffer zone has not been investigated due to lack of efficient evaluation method for the analysis of water quality improvement with established riparian buffer system. To solve this problem, the SWAT-REMM prototype was developed by the researchers in Canada. But, SWAT-REMM model can not consider the $NO_3-N$ load into riparian buffer system through subsurface flow. Thus to solved this problem, Fortran code of SWAT-REMM model was modified. This modified SWAT-REMM system was applied to the Bonggok watershed. Three riparian buffer scenarios, 15 m, 10 m, 5 m width for tree and grass, were made to evaluate the effects of riparian buffer system on water quality improvement. Reduction efficiency of T-N by riparian buffer system of 15 m wide was the greatest (6 ~ 37%, depending on subwatershed characteristics) among 3 scenarios. It indicates that the reduction efficiency of T-N load has increasing-tendency, as buffer width increasing. The results obtained from the analysis showed that wide buffer zones are found to be more effective in reducing non-point pollutant than narrow buffer zones in the riparian buffer zone system. Hence, the SWAT-REMM model could be efficiently used for evaluation and design the most effective riparian buffer systems to reduce pollutant loads to the watershed although many limitations still exist in SWAT-REMM model.

Reference information for realizing ecological restoration of river: A case study in the Bongseonsa stream

  • Park, Sung Ae;Kim, Gyung-Soon;Pee, Jung-Hun;Oh, Woo-Seok;Kim, Hye-Soo;Lee, Chang Seok
    • Journal of Ecology and Environment
    • /
    • v.36 no.4
    • /
    • pp.235-243
    • /
    • 2013
  • In Korea, where the plain land is greatly deficient as a mountainous nation, most of riparian zones were transformed into agricultural fields and urban areas. Excessive use of the land, which is close to river, makes the rivers enduring severe pollution stresses. Disappearance of riparian buffer, which plays a function of filter in the riverside, appears as a main factor aggravating water pollution of rivers. In this respect, it is imperative to restore the lost riparian vegetation. This study found out restoration models of riparian vegetation from the Bongseonsa stream, which has remnant riparian vegetation patches as a conservation reserve. Feasible reference information applicable for restoration of riparian vegetation was shown in the species level in the order of herb, shrub, and tree and sub-tree zones as far away from the waterway. Those information could contribute to restoring integrate and healthy rivers and streams beyond simple landscaping differently from the other restoration projects when they will be applied to the restoration project to be carried out in the future. In addition, the spatial range of river and stream, background that riparian zone disappeared in Korea, and application plan of the obtained reference information were discussed.

Design of Riparian Buffer Zone by Citizen's Participation for Ecosystem Service - Case Study of Purchased Land along Gyeongan-cheon in Han River Basin - (생태계 서비스를 위한 주민 참여형 수변완충녹지 설계 고찰 - 한강수계 경안천변 매수토지 사례 연구 -)

  • Bahn, Gwon-Soo
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.170-184
    • /
    • 2022
  • The Riparian Buffer Zone(RBZ) is a sustainable social-ecological system created in the middle zone between water and land. For the RBZ, close communication with the local community is important, and it is necessary to promote it as a communicative environmental planning process. In this study, for the RBZ project, three strategies are presented as a communicative act to understand and implement planning. First, government-led projects were avoided and improved to a process in which citizens and stakeholders participated together, centered on local partnership. Second, it was intended to introduce design criterias in terms of enhancing the function of ecosystem services that citizens can sympathize with, and to increase acceptance and awareness through the planning of preferred spaces and facilities. Third, after a balanced plan for habitats, water cycle-based ecological environment, ecological experience and open space, citizens felt the restoration effect and value as an ecological resources, and a system was prepared to participate in the operation and management. This study will work as a process model based on citizens's participation. In addition, it will be possible to provide lessons for the change of the policy paradigm for the RBZ and the implementation of similar projects in the future.

Development and Application of a Model for Restoring a Vegetation Belt to Buffer Pollutant Discharge (수질 오염물질 배출저감을 위한 완충식생 복원 모델 개발)

  • An, Ji Hong;Lim, Chi Hong;Lim, Yun Kyung;Nam, Kyeong Bae;Pi, Jung Hun;Moon, Jeong Sook;Bang, Je Yong;Lee, Chang Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.205-215
    • /
    • 2016
  • In order to improve water quality in the Paldang Lake, a riparian vegetation belt, treatment wetland, and artificial floating island were designed for introduction in the upland field, the estuary of tributaries, and the section of water facing mountainous land, respectively. We synthesized vegetation information collected from a reference river and found that herbaceous, shrubby, and tree vegetation zones tended to be dominated by Phragmites japonica, Phalaris arundinacea, etc.; Salix gracilistyla, S. integra, etc.; and S. koreensis, S. subfragilis, and Morus alba, respectively. In our plan, the herbaceous vegetation zone, which is established on floodplains with a high frequency of disturbance, will be left in its natural state. A shrubby vegetation zone will be created by imitating the species composition of the reference river in the ecotone between floodplain and embankment. A tree vegetation zone will be created by imitating species composition on the embankment slope. In the treatment wetland, we plan to create emerged and softwood plant zones by imitating the species composition of the Zizania latifolia community, the Typha orientalis community, the P. communis community, the S. integra community, and the S. koreensis community. The floating island will be created by restoring Z. latifolia and T. orientalis for water purification purposes.

Application Load Duration Curve for Evaluation of Impaired Watershed at TMDL Unit Watershed in Korea (수질오염총량 단위유역의 유량조건별 수체 손상 평가를 위한 부하지속곡선 적용성 연구)

  • Hwang, Ha-Sun;Yoon, Chun-Gyeong;Kim, Ji-Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.903-909
    • /
    • 2010
  • The purpose of this study was evaluated on the applicability of Load Duration Curve Method (LDC Method) using HSPF watershed model and sampling data for efficient TMDLs in Korea. The LDC Method was used for assessment pollutant characteristics in watershed and water quality variation in each water flow level. Load Duration Curve is applied for judge the level of impaired water-body and can be estimated the impaired level by pollutant, such as BOD, T-N, and T-P in this study depending on variation of stream flow. As a result, BOD, T-P was usually exceed the standard value at low flow and dry hydrologic period. Improvement of effluent concentration from WWTP and riparian buffer protection zone are effective to improve the water quality. T-N showed the worst condition at mid-range hydrologic period and moist hydrologic period. Therefore, soil erosion control program and BMPs for non-point source pollution control is effective for recovery the water quality, which can be useful method for management of water quality in the plan of recovery water quality spontaneously. Applicability of LDC Method was evaluated in the Nakbon A watershed. However, we need to consider more detailed and accumulated data set such as accurate GIS data and detail pollution data, and WWTP discharge water quality data for accurate evaluation of watershed. Overall, The LDC Method is adequate for evaluation of watersheds characteristics, and its application is recommended for watershed management and TMDL Implementation.

Analysis and Management of Potential Development Area Using Factor of Change from Forest to Build-up (산림의 시가지 변화요인을 통한 잠재개발지 분석 및 관리방안)

  • LEE, Ji-Yeon;LIM, No-Ol;LEE, Sung-Joo;CHO, Hyo-Jin;SUNG, Hyun-Chan;JEON, Seong-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.2
    • /
    • pp.72-87
    • /
    • 2022
  • For the sustainable development and conservation of the national land, planned development and efficient environmental conservation must be accompanied. To this end, it is possible to induce development and conservation to harmonize by deriving factors affecting development through analysis of previously developed areas and applying appropriate management measures to areas with high development pressure. In this study, the relationship between the area where the land cover changed from forest to urbanization and various social, geographical, and restrictive factors was implemented in a regression formula through logistic regression analysis, and potential development sites were analyzed for Yongin City. The factor that has the greatest impact on the analysis of potential development area is the restrict factors such as Green Belt and protected areas, and the factor with the least impact is the population density. About 148km2(52%) of Yongin-si's forests were analyzed as potential development area. Among the potential development sites, the area with excellent environmental value as a protected area and 1st grade on the Environment Conservation Value Assessment Map was derived as about 13km2. Protected areas with high development potential were riparian buffer zone and special measurement area, and areas with excellent natural scenery and river were preferred as development areas. Protected areas allow certain actions to protect individual property rights. However, there is no clear permit criteria, and the environmental impact of permits is not understood. This is identified as a factor that prevents protected areas from functioning properly. Therefore, it needs to be managed through clear exception permit criteria and environmental impact monitoring.