• Title/Summary/Keyword: Riparian Vegetation

Search Result 178, Processing Time 0.028 seconds

Experimental analysis on the morphologic changes and adaption of the channels to floodplain vegetation (홍수터 식생에 의한 하도의 지형변화와 적응과정 실험적 분석)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.801-810
    • /
    • 2022
  • This study investigates the evolution processes of alternate bars in the channel with bank stability by vegetation by laboratory experiment. Laboratory experiments are conducted to elucidate the behavior of alternate bars by the influence of riparian vegetation on the rivers with erodible banks. To control bank stability of the channel, the actual vegetation, alfalfa, is grown by adjusting the density of alfalfa on the flood plain. As the vegetation density increases in the flood plain, the bank erosion rates and the channel widening rates decrease and the bank stability increases. The alternate bars migrate slow downstream over time. Moreover, the bars in a channel with strong banks migrate rapidly, which is related with the aspect ratio, that is, width to depth ratio. The bar wavelength decrease with vegetation density. Our laboratory experiments show that the behavior of bars differ according to bank strength.

Estimation for River Naturality in the Hwang River (황강 수생태계에 대한 하천 자연도 평가 연구)

  • Huh, Man-Kyu
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.195-203
    • /
    • 2013
  • I investigated the river morphology and river naturality according to the environment of the Hwang River. The numbers of flexions at the upstream regions were more than those of downstream regions. The Hwang River showed very low overall diversity of the flow. Materials of river shore at low channel width were mainly boulders or gravel at the upstream regions, and the middle and downstream were silts and clay. Artificial masonry and natural materials were mixed from materials of river levees. The Hwang River was some of the natural herbaceous vegetation to riparian zones. Land utilities for floodplain were extremely overall farmland were predominant, and partly used by natural vegetation in the forest, a soccer field, some park facilities, residential, and commercial facilities. The water was width sleep / rivers beam ratio of 10 to 20%. Currently estimation for river naturality widely used in rivers were consisted of a narrow wide a variety of items and did not reflect the actual.

Monitoring of Plant Community Structure Change for Four Years(2007~2010) after Riparian Ecological Restoration, Nakdonggang(River) (낙동강 수변 생태복원지 시공 후 4년간(2007~2010년) 식생구조 변화 모니터링)

  • Ki, Kyong-Seok;Kim, Jong-Yup
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.5
    • /
    • pp.707-718
    • /
    • 2012
  • This study was conducted to monitor 4 years of changes in the vegetation structure starting from 2007 when restoration began and propose vegetation management ideas for the riparian ecological restoration areas in the purchased land around Nakdonggang(River). The study was conducted in each of 15 locations ($208,342m^2$) in the riparian ecological restoration areas in November 2007, September 2008, October 2009 and September 2010. The analysis results of the changes in planting species and population showed that, in the case of trees, Acer pseudo-sieboldianum, Quercus acutissima, Acer ginnala, Quercus aliena, Quercus variabilis indicated relatively little changes in their numbers and Quercus dentata, Cornus walteri, Morus alba, Styrax obassia, Sorbus alnifolia var. macrophylla indicated a 100% withering rate. Most shrubs withered due to the oppressive pressure of herbs and climbing plants. The planting density decreased over 4 years on average 28 plants/$100m^2$ to 20 plants/$100m^2$ to 16 plants/$100m^2$. Shortly after the restoration, The the amount of growth was reduced by restoration stress. however as time goes on after the restoration tended to stabilize. The changes in the basal area showed a decrease from $507.1cm^2/100m^2$ in 2007 right after restoration to $301.8cm^2/100m^2$ in 2008 and afterwards showed an increasing trend by going to $324.9cm^2/100m^2$ in 2009 and $372.7cm^2/100m^2$ in 2010. To improve the planting structure of the riparian ecological restoration area, the selection of tree species that have been considered for soil moisture and the differentiation of suitable planting structures that have been considered for local conditions were needed.

Community Distribution on Mountain Forest Vegetation of the Noinbong Area in the Odaesan National Park, Korea (오대산 국립공원 노인봉 일대 삼림식생의 군락분포에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Kang, Eun-Ok;Choi, Young-Eun
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.103-115
    • /
    • 2014
  • Forest vegetation of Noinbong (1,338 m) in Odaesan National Park is classified into mountain forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, mountain valley forest, coniferous forest, subalpine coniferous forest, subalpine deciduous forest, shrub forest, riparian forest, afforestation and other vegetation. Including 196 communities of mountain forest vegetation and 7 communities of other vegetation, the total of 203 communities were researched; mountain forest vegetation classified by physiognomy classification are 62 communities deciduous broad-leaved forest, 85 communities of mountain valley forest, 18 communities of coniferous forests, 3 communities of subalpine coniferous forests, 4 communities of subapine deciduous forests, 2 communities of shrub forests, 1 communities of riparian forests, 21 afforestation and 7 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus serrata, Quercus variabilis communities account for 54.856 percent of deciduous broad-leaved forest, Fraxinus mandshurica - Cornus controversa community takes up 15.482 percent of mountain valley forest, Pinus densiflora community holds 78.091 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Pinus densiflora, Tilia amurensis, Fraxinus mandshurica, Cornus controversa, Quercus serrata, and Quercus variabilis are distributed as dominant species of the uppermost part in a forest vegetation region in Odaesan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Carpinus laxiflora and Fraxinus mandshurica which are climax species in the area.

Community Distribution on Mountain Forest Vegetation of the Hwangjangsan Area in the Worak National Park, Korea (월악산국립공원 황장산 일대 삼림식생의 군락분포에 관한 연구)

  • Lee, Jung-Yun;Oh, Jang-Geun;Jung, Se-Hoon;Kim, Ha-Song
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.203-211
    • /
    • 2015
  • Forest vegetation of Hwangjangsan (1,077.3 m) in Woraksan National Park is classified into mountain forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, mountain valley forest, coniferous forest, riparian forest, afforestation and other vegetation. Including 55 communities of mountain forest vegetation and 4 communities of other vegetation, the total of 59 communities were researched; mountain forest vegetation classified by physiognomy classification are 28 communities deciduous broad-leaved forest, 12 communities of mountain valley forest, 3 communities of coniferous forests, 2 communities of riparian forest, 10 afforestation and 4 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica and Quercus variabilis communities account for 65.928 percent of deciduous broad leaved forest, Fraxinus rhynchophylla - Quercus mongolica community takes up 41.459 percent of mountain valley forest, Pinus densiflora community holds 86.100 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Pinus densiflora, Quercus variabilis, Fraxinus rhynchophylla, and Quercus serrata are distributed as dominant species of the uppermost part in a forest vegetation region in Woraksan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Quercus variabilis, and Fraxinus rhynchophylla which are climax species in the area.

Community Distribution on Mountain Forest Vegetation of the Youngbong Area in the Worak National Park, Korea (월악산국립공원 영봉 일대 삼림식생의 군락분포에 관한 연구)

  • Lee, Jung-Yun;Oh, Jang-Geun;Jang, In-Soo;Kim, Ha-Song
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.51-60
    • /
    • 2015
  • Forest vegetation of Youngbong (1,094 m) in Woraksan National Park is classified into mountain forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, mountain valley forest, coniferous forest, riparian forest, afforestation and other vegetation. Including 84 communities of mountain forest vegetation and 7 communities of other vegetation, the total of 91 communities were researched; mountain forest vegetation classified by physiognomy classification are 39 communities deciduous broad-leaved forest, 26 communities of mountain valley forest, 6 communities of coniferous forests, 2 communities of riparian forests, 11 afforestation and 7 other vegetation. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus variabilis communities account for 40.879 percent of deciduous broad leaved forest, Fraxinus mandshurica - Cornus controversa community takes up 25.627 percent of mountain valley forest, Pinus densiflora community holds 75.618 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus mongolica, Pinus densiflora, Quercus variabilis, Fraxinus mandshurica, and Quercus serrata are distributed as dominant species of the uppermost part in a forest vegetation region in Woraksan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Quercus variabilis and Fraxinus mandshurica which are climax species in the area.

Community Distribution on Mountain Forest Vegetation of the Geumsusan and Doraksan Area in the Worak National Park, Korea (월악산국립공원 금수산 및 도락산 일대 삼림식생의 군락분포에 관한 연구)

  • Lee, Jung-Yun;Oh, Jang-Geun;Jung, Se-Hoon;Kim, Ha-Song
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.129-138
    • /
    • 2015
  • Forest vegetation of Geumsusan (1,016.0 m) and Doraksan (964.4 m) in Woraksan National Park is classified into mountain forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, mountain valley forest, coniferous forest, riparian forest, afforestation and other vegetation. Including 77 communities of mountain forest vegetation and 5 communities of other vegetation, the total of 82 communities were researched; mountain forest vegetation classified by physiognomy classification are 37 communities deciduous broad-leaved forest, 16 communities of mountain valley forest, 8 communities of coniferous forests, 1 community of riparian forest, 15 afforestation and 5 other vegetation. As for the distribution rate for surveyed main communities, Quercus variabilis and Quercus mongolica communities account for 33.031 percent of deciduous broadleaved forest, Cornus controversa community takes up 29.142 percent of mountain valley forest, Pinus densiflora community holds 64.477 percent of mountain coniferous forest holds. In conclusion, minority species consisting of Quercus variabilis, Quercus mongolica, Pinus densiflora, Quercus serrata and Cornus controversa are distributed as dominant species of the uppermost part in a forest vegetation region in Woraksan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus variabilis, Quercus mongolica, Cornus controversa and Fraxinus mandshurica which are climax species in the area.

Adina rubella Phytocoena in Jeju Island, Korea (제주도 하천의 중대가리나무 식생)

  • Choi, Byoung-Ki;Ryu, Tae-Bok;Kim, Jong-Won
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.68-76
    • /
    • 2015
  • There is no willow riparian vegetation in Jeju Island, Korea. Instead, a genetically-isolated population of Adina rubella is found in some parts of the riparian system. We describe its syntaxonomy and synecology. A total of 27 phytosociological relev$\acute{e}$s were collected, 11 relev$\acute{e}$s from 91 sites and 16 relev$\acute{e}$s from the previously published relevant materials. Data were analyzed by traditional Braun-Blanquet method and multivariate PCoA (Principal coordinates analysis). New syntaxa are distinguished, Adinion rubellae all. nov. and its type association Tripogono-Adinetum rubellae ass. nov. with two subassociations, typicum and rhododendretosum poukhanensae. Adino-Rhododendretum poukhanensae Itow et al. 1993 was discarded owing to mismatch of syntaxonomy and syngeography of Adina and Rhododendron phytocoena. The alliance Adinion is Jeju's regional and partly ombrotrophic vegetation occurring in pothole and rock crevice where are independent on ground-water table. We also suggest a revised alliance, Rhododendrion poukhanensae Lee 2004 ex. hoc loco in Korean peninsula, as a corresponding syntaxon to Adinion, which completely differs from Phragmito-Salicion. Finally we pointed out that Adina phytocoena requiring an absolutely monitoring has been threatened by river maintenance project of local government.

Structure and Distribution of Vegetation and Their Implications for the Conservation in the Gonggeomji Wetland Protection Area, South Korea (공검지 습지보호지역의 식생 구조와 분포 및 보전을 위한 제안)

  • Lee, Cheolho;Kim, Hwirae;Park, So Hyun;Chu, Yeounsu.;Yoon, Jungdo;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.267-276
    • /
    • 2019
  • The Gonggeomji Reservoir is a historical irrigation facility built in the 8th century and designated as a wetland protected area by Ministry of Environment, Korea. In order to collect the baseline data necessary for developing a sustainable conservation strategy, we investigated the classification of actual vegetation, the vegetation distribution and the floristic structure of the vegetation in the Gonggeomji Wetland Protection Area. In the whole protection area, a total of 26 plant communities were classified including the wetland, riparian, grassland, forest, farmland, and orchard vegetation. According to the results of detrended correspondence analysis, the structure of wetland vegetation was mainly affected by water depth and human disturbance. In reservoir wetlands, floating vegetation such as Utricularia vulgaris var. japonica, Trapa japonica, and emergent vegetation such as Nelumbo nucifera, Typha spp. completely covered the water surface. Since 2014, the reservoir wetland has been terrestrialized with the expansion of emergent and hygrophytic plants. For the sustainable conservation and restoration of wetland protected areas, it is necessary to naturalize the topography and wetland vegetation, recovery the hydrologic system, and restore ecosystem connectivity from wetlands to forests.

A Study On the Classification and Characteristics of Wetlands - Cases on the Watershed of Tumen River downstream in China - (중국 두만강 하류 유역의 습지 분류 특성에 관한 연구)

  • Zhu, Wei-Hong;Kim, Kwi-Gon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.1
    • /
    • pp.35-50
    • /
    • 2002
  • This study aims to understand wetland distribution and type-specific classification features with a focus on Tumen River downstream in China by adjusting and improving the classification system used in Korea with a reference to international wetland classification systems and their criteria & methods. In this study, wetland types were determined based on hydrology, vegetation, and soil conditions, which are the most basic elements of wetlands. Also, topography analytical map, vegetation analytical map, and soil analytical map for wetland classification were developed and used based on currently available topography map, vegetation map, and soil map. In addition, codes were defined based on topography, location, hydrology, and vegetation. The result shows that, in the Tumen River downstream, wetlands are often found near natural revetment and terrace land & river-bed lakes. In the discovered wetlands, riverine, lacustrine, and inland wetlands were mostly found at system level. Riparian and human-made wetlands were also identified. At a sub-system level, perennial and seasonal wetlands were found to a similar degree. At a class level, perennial open water, herbal plants, and shrubs were mostly found and sandy plain, hydrophytes, and forest tree types were also observed. An overall detailed classification shows that a total of 17 wetland types were found and a large distribution of sand dunes and river-bed lakes, which are scarce in Northeast Asia, indicates that other rare wetland types such as palustrine seasonal sand plain wetland and lacustrine seasonal sand plain wetland may be discovered.