• Title/Summary/Keyword: Ring Stiffness

Search Result 93, Processing Time 0.019 seconds

Design Tolerance of High Speed Spindle considering the Variation of Ball Contact Angle in the Angular Contact Ball Bearings (고속 주축베어링의 볼 접촉각 변동을 고려한 주축 설계공차)

  • Lee, Chan-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.609-615
    • /
    • 2010
  • Angular contact ball bearings in a high speed spindles are under the extreme conditions, such as high temperature, big centrifugal force and thrust cutting forces. So, the assembly contacts between spindle shaft and inner ring bearings, bearing housing and outer ring of bearings are occasionally unstable at high speed revolution. Furthermore, the ball contact angle of a bearing, which influence stiffness and lifetime of bearings, are changed according to loads and rotational speed. To analyze internal forces of a bearing under high speed revolution, the ball contact are calculated using nonlinear equations in consideration of rotational speed, thrust loads and raceway form. Diameter increase of inner and outer ring by influence factors, such as internal forces to inner and outer ring, centrifugal force and temperature of inner and outer rings are calculated to establish stable state in bearing assembly in high speed spindle. Finally, contribution ratio of influence factor to assembly design tolerance of inner and outer rings are shown and the stable assembly design tolerance are proposed.

Development of an ACL Anchor: Effects of the Design Parameters on the Performance of a New Anterior Cruciate Ligament Fixation Device

  • Kim, Jong-Dae;Oh, Chae-Youn;Kim, Cheol-Sang
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.132-138
    • /
    • 2008
  • We investigated the biomechanical properties of a newly designed self-expansion type anterior cruciate ligament (ACL) anchor. The ACL anchor consists of the ring section giving the elastic force, the wedge for maintaining in contact with the femur tunnel wall and the link suspending hamstring graft or artificial ligament. The main design parameters that determine the performance of this device were the expansion angle (${\theta}$) and the thickness ($t_R$). The Ti6Al4V anchors were heated after inserting in a jig for 1 hour at $800^{\circ}C$ in a protective argon gas atmosphere and allowed to cool to room temperature in the furnace. In order to investigate the influence of the expansion angle and the thickness of the ring on the biomechanical properties of the anchor, the maximum pull-out load, stiffness and slippage of the ACL anchor were measured using the pull-out tester, and statistical analyses were also executed. The present results showed that the design parameters gave a significant effect on the performance of the self- expansion type of anchor. The pull-out load of the ACL anchors significantly increased as the thickness of the ring section was increased, having a similar trend for both expansion angles. The ACL anchor showed about 2.5 times higher values of the pull-out load than that of the minimum load (500N)required for the "accelerated rehabilitation". The optimum ${\theta}$ and $t_R$ values of this ACL anchor were suggested to have sufficient resistance against the pull-out force, high stiffness and relatively low slippage after ACL reconstruction.

Torsional Rigidity of a Two-stage Cycloid Drive (이단 사이클로이드 드라이브의 비틀림 강성)

  • Kim, Kyoung-Hong;Lee, Chun-Se;Ahn, Hyeong-Joon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1217-1224
    • /
    • 2009
  • This paper presents a finite element (FE) analysis of the torsional rigidity of a two-stage cycloid drive. The cycloid disk makes contact with a number of pin-rollers simultaneously and eccentric shafts transmit not only torque of the spur gear stage to the cycloid disk, but also that of the cycloid disk to the output disk. Contacts between the disk and pin-rollers are simplified as linear spring elements, and the bearing of eccentric shaft is modeled as a rigid ring that has frictional contact to the disk and an elastic support. FE analysis for an ideal solid cycloid drive was performed and verified by a theoretical calculation. Accurate contact forces were then estimated by iterating between FE analysis for contact forces and Hertz theory calculations for nonlinear contact stiffness. In addition, torsional rigidity of the cycloid drive is analyzed to show that the bearing and nonlinear Hertz contact theory should be considered in analysis and design of a cycloid drive, which was verified with experiments. Finally, the effects of contact stiffness, bearing stiffness and cycloid disk structural stiffness according to the cycloid disk rotation on the torsional rigidity were investigated.

Thrust Bearing Design for High-Speed Composite Air Spindles (고속 복합재료 공기 주축부를 위한 추력베어링 설계)

  • Bang, Kyung-Geun;Lee, Dai-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.1997-2007
    • /
    • 2002
  • Composite air spindles are appropriate for the high-speed and the high-precision machining as small hole drilling of printed circuit board (PCB) or wafer cutting for manufacturing semiconductors because of the low rotational inertia, the high damping ratio and the high fundamental natural frequency of composite shaft. The axial load and stiffness of composite air spindles fur drilling operation are determined by the thrust ben ring composed of the air supply part mounted on the housing and the rotating part mounted on the rotating shaft. At high-speed rotation, the rotating part of the thrust bearing should be designed considering the stresses induced by centrifugal force as well as the axial stiffness and the natural frequency of the rotating shaft to void the shaft from failure due to the centrifugal force and resonant vibration. In this work, the air supply part of the thrust bearing was designed considering the bending stiffness of the bearing and the applied load. The rotating part of the thrust bearing was designed through finite element analysis considering the cutting forces during manufacturing as well as the static and dynamic characteristics under both the axial and con trifugal forces during high-speed rotation.

Experimental study on all-bolted joint in modularized prefabricated steel structure

  • Wu, Zhanjing;Tao, Zhong;Liu, Bei;Zuo, Heng
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.613-620
    • /
    • 2020
  • The research study is focuses on a form of all-bolted joint with the external ring stiffening plate in the prefabricated steel structure. The components are bolted at site after being fabricated in the factory. Six specimens were tested under cyclic loading, and the effects of column axial compression ratio, concrete-filled column, beam flange sub plate, beam web angle cleats, and spliced column on the failure mode, hysteretic behavior and ductility of the joints were analyzed. The results shown that the proposed all-bolted joint with external ring stiffening plate performed high bearing capability, stable inflexibility degradation, high ductility and plump hysteretic curve. The primary failure modes were bucking at beam end, cracking at the variable section of the external ring stiffening plate, and finally welds fracturing between external ring stiffening plate and column wall. The bearing capability of the joints reduced with the axial compression ratio increased. The use of concrete-filled steel tube column can increase the bearing capability of joints. The existence of the beam flange sub plate, and beam web angle cleat improves the energy dissipation, ductility, bearing capacity and original rigidity of the joint, but also increase the stress concentration at the variable section of the external reinforcing ring plate. The proposed joints with spliced column also performed desirable integrity, large bearing capacity, initial stiffness and energy dissipation capacity for engineering application by reasonable design.

Dynamic response of segment lining due to train-induced vibration (세그먼트 라이닝의 열차 진동하중에 대한 동적 응답특성)

  • Gyeong-Ju Yi;Ki-Il Song
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.305-330
    • /
    • 2023
  • Unlike NATM tunnels, Shield TBM tunnels have split linings. Therefore, the stress distribution of the lining is different even if the lining is under the same load. Representative methods for analyzing the stress generated in lining in Shield TBM tunnels include Non-joint Mode that does not consider connections and a 2-ring beam-spring model that considers ring-to-ring joints and segment connections. This study is an analysis method by Break-joint Mode. However, we do not consider the structural role of segment lining connections. The effectiveness of the modeling is verified by analyzing behavioral characteristics against vibration loads by modeling with segment connection interfaces to which vertical stiffness and shear stiffness, which are friction components, are applied. Unlike the Non-joint mode, where the greatest stress occurs on the crown for static loads such as earth pressure, the stress distribution caused by contact between segment lining and friction stiffness produced the smallest stress in the crown key segment where segment connections were concentrated. The stress distribution was clearly distinguished based on segment connections. The results of static analysis by earth pressure, etc., produced up to seven times the stress generated in Non-joint mode compared to the stress generated by Break-joint Mode. This result is consistent with the stress distribution pattern of the 2-ring beam-spring model. However, as for the stress value for the train vibration load, the stress of Break-joint Mode was greater than that of Non-joint mode. This is a different result from the static mechanics concept that a segment ring consisting of a combination of short members is integrated in the circumferential direction, resulting in a smaller stress than Non-joint mode with a relatively longer member length.

Mechanical Dither Design for Ring Laser Gyroscope

  • Lee, Dong-Chan;Gun Moon;Lee, Jae-Cheul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.485-491
    • /
    • 2002
  • The gyroscopes have been used as a suitable inertial instrument for the navigation guidance and attitude controls. The accuracy as very sensitive sensor is limited by the lock-in region (dead band) by the frequency coupling between two counter-propagating waves at low rotation rates. This frequency coupling gives no phase difference and an angular increment is not detected. This problem can be overcome by the mechanical dithering. The purpose of the mechanical dithering is to suppress the dead band, oscillate the monoblock about the rotation axis and add an external rotation rate. This paper presents the theoretical considerations of the mechanical performances of dither on the basis of the loading condition and angular characteristics due to the piezoelement deformation and the validity of theoretical equations are compared through FEM (Finite Element Method) simulations.

Critical Speeds Evaluation of Turbo Pump Unit with a Elasticring Inserted Ball Bearing (탄성 링을 갖는 볼 베어링 지지의 터보 펌프 임계 속도에 관한 연구)

  • Lee, Yong-Bok;Kim, Chang-Ho;Kwak, Hyun-Duck;Ha, Tae-Woong;Yoo, Woo-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.2 s.11
    • /
    • pp.22-28
    • /
    • 2001
  • This study was performed to evaluate the dynamic behavior of turbo pump unit. The acceptable separate margin of $1^{st}$ critical speed was obtained by the use of elastic-ring inserted ball bearing, while the poor separate margin of $1^{\st}$ critical speed was appeared in the case without the elastic-ring. In addition, the results show that the stiffness and damping of plain seals give more separate margin of $2^{nd}$ critical speed. However the wear or the failure of seals could reduce the $2^{nd}$ critical speed near the operating speed.

  • PDF

An Analysis of High Speed Forming Using the Explicit Time Integration Finite Element Method (I) -Effects of Friction and Inertia Force- (엑스플리시트 시간 적분 유한요소법을 이용한 고속 성형 해석 (I) -마찰 및 관성 효과-)

  • 유요한;정동택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 1991
  • Two-dimensional explicit finite element code was developed. The transient dynamics code can analyse large deformations of non-linear materials subjected to extremely high strain rates. The Lagrangian finite element program uses an explicit time integration operator to integrate the equations of motion, thus the stiffness matrix is not introduced. Cylinder upsetting and ring compression problems are simulated to check the effects of friction and inertia force. It is shown that (1) calculated results agree very well with experimental results, (2) constant shear friction method overestimates the decrease of inner ring radius and then underestimates after on in comparison with the Coulomb friction method, and (3) the effect of the increase in initial strain rate is similar to the effect of higher frictional coefficient.

Analysis of the Segment-type Ring Burst Test Method for the Mechanical Property Evaluation of Cylindrical Composite Pressure Vessel (원통형 복합재료 압력 용기의 기계적 물성 평가를 위한 세그먼트 형 링 버스트 시험 방법 분석)

  • Kim, Woe Tae;Kim, Seong Soo
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.257-263
    • /
    • 2021
  • Composite materials have been widely applied for fabricating pressure vessels used for storing gaseous and liquid fuel because of their high specific stiffness and specific strength. Accordingly, the accurate measurement of their mechanical property, particularly the burst pressure or fracture strain, is essential prior to the commercial release. However, verification of the safety of composite pressure vessels using conventional test methods poses some limitations because it may lead to the deformation of the load transferring media or provoke an additional energy loss that cannot be ignored. Therefore, in this study, the segment-type ring burst test device was designed considering the theoretical load transferring ratio and applicable displacement of the vertical column. Moreover, to verifying the uniform distribution of pressure of the segment type ring burst test device, the hoop stress and strain distribution of ring specimens were compared with that of the hydraulic pressure test method via FEM. To conduct a simulation of the fracture behavior of the composite pressure vessel, a Hashin failure criterion was applied to the ring specimen. Furthermore, the fracture strain was also measured from the experiment and compared with that of the result from the FEM.