• 제목/요약/키워드: Ring Stiffener

검색결과 39건 처리시간 0.028초

다양한 경계조건을 갖는 링보강 복합재료 원통셸의 진동특성 (Vibration Characteristics of Ring-Stiffened Composite Cylindrical Shells with Various Edge Boundary Conditions)

  • 김영완;이영신
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.485-492
    • /
    • 1999
  • The effects of boundary conditions on vibration characteristics for the ring stiffered composite cylindrical shells are investigated by theoretical and experimental method. In the theoretical procedure, the Love's thin shell theory combined with the discrete stiffener theory to consider the ring stiffening effect are adopted to derive the frequency equation. In experiment, the impact exciting method is used to obtain the vibraton results. Five different boundary conditions: clamped-clamped, simply supported-simply supported, free-free, clamped-free, clamped-simply supported are considered in this study.

  • PDF

SCFs in offshore two-planar tubular TT-joints reinforced with internal ring stiffeners

  • Ahmadi, Hamid;Imani, Hossein
    • Ocean Systems Engineering
    • /
    • 제12권1호
    • /
    • pp.1-22
    • /
    • 2022
  • The majority of tubular joints commonly found in offshore jacket structures are multi-planar. Investigating the effect of loaded out-of-plane braces on the values of the stress concentration factor (SCF) in offshore tubular joints has been the objective of numerous research works. However, due to the diversity of joint types and loading conditions, a number of quite important cases still exist that have not been studied thoroughly. Among them are internally ring-stiffened two-planar TT-joints subjected to axial loading. In the present research, data extracted from the stress analysis of 243 finite element (FE) models, verified against available numerical and experimental data, was used to study the effects of geometrical parameters on the chord-side SCFs in two-planar tubular TT-joints reinforced with internal ring stiffeners subjected to two types of axial loading. Parametric FE study was followed by a set of nonlinear regression analyses to develop six new SCF parametric equations for the fatigue analysis and design of axially-loaded two-planar TT-joints reinforced with internal ring stiffeners.

연직하중을 받는 콘크리트충전 원형강관기둥의 접합부 내력에 관한 연구 (A Study on the Strength and Stiffness of the Concrete Filled Circular Tube Beam to Column Connections under the Gravity Loads)

  • 이명우;최성모;김동규
    • 한국강구조학회 논문집
    • /
    • 제9권4호통권33호
    • /
    • pp.611-623
    • /
    • 1997
  • 연직하중을 받는 콘크리트충전 원형강관기둥 외다이아프램 접합부의 거동을 파악하고자 실험을 통하여 그 내력을 평가하고 각 변수에 따른 영향도를 분석하였다. 이를 위해 다층골조의 보-기둥을 실물크기 1/4규모로 모델화시켜 총 20개의 실험체를 제작하였으며 스티프너 보강유무, 스티프너 폭, 강관두께, 강관과 스티프너의 용접유무 등을 주요변수로 두어 본 연구를 수행하였다.

  • PDF

Energy absorption of the ring stiffened tubes and the application in blast wall design

  • Liao, JinJing;Ma, Guowei
    • Structural Engineering and Mechanics
    • /
    • 제66권6호
    • /
    • pp.713-727
    • /
    • 2018
  • Thin-walled mental tubes under lateral crushing are desirable and reliable energy absorbers against impact or blast loads. However, the early formations of plastic hinges in the thin cylindrical wall limit the energy absorption performance. This study investigates the energy absorption performance of a simple, light and efficient energy absorber called the ring stiffened tube. Due to the increase of section modulus of tube wall and the restraining effect of the T-stiffener flange, key energy absorption parameters (peak crushing force, energy absorption and specific energy absorption) have been significantly improved against the empty tube. Its potential application in the offshore blast wall design has also been investigated. It is proposed to replace the blast wall endplates at the supports with the energy absorption devices that are made up of the ring stiffened tubes and springs. An analytical model based on beam vibration theory and virtual work theory, in which the boundary conditions at each support are simplified as a translational spring and a rotational spring, has been developed to evaluate the blast mitigation effect of the proposed design scheme. Finite element method has been applied to validate the analytical model. Comparisons of key design criterions such as panel deflection and energy absorption against the traditional design demonstrate the effectiveness of the proposed design in blast alleviation.

Numerical studies of the failure modes of ring-stiffened cylinders under hydrostatic pressure

  • Muttaqie, Teguh;Thang, Do Quang;Prabowo, Aditya Rio;Cho, Sang-Rai;Sohn, Jung Min
    • Structural Engineering and Mechanics
    • /
    • 제70권4호
    • /
    • pp.431-443
    • /
    • 2019
  • The present paper illustrates a numerical investigation on the failure behaviour of ring-stiffened cylinder subjected to external hydrostatic pressure. The published test data of steel welded ring-stiffened cylinder are surveyed and collected. Eight test models are chosen for the verification of the modelling and FE analyses procedures. The imperfection as the consequences of the fabrication processes, such as initial geometric deformation and residual stresses due to welding and cold forming, which reduced the ultimate strength, are simulated. The results show that the collapse pressure and failure mode predicted by the nonlinear FE analyses agree acceptably with the experimental results. In addition, the failure mode parameter obtained from the characteristic pressure such as interframe buckling pressure known as local buckling pressure, overall buckling pressure, and yield pressure are also examined through the collected data and shows a good correlation. A parametric study is then conducted to confirm the failure progression as the basic parameters such as the shell radius, thickness, overall length of the compartment, and stiffener spacing are varied.

보강복합재료원통셸의 최적설계 (Optimal Design of Stiffened Laminate Composite Cylindrical Shells)

  • 원종진
    • 한국생산제조학회지
    • /
    • 제7권6호
    • /
    • pp.12-18
    • /
    • 1998
  • The optimal design for stiffened laminate composite cylindrical shells under combined loads is studied by a nonlinear mathematical search algorithm. The optimal design is accomplished with the CONMIN. several types of buckling modes with maximum allowable stresses and strains are included as constraints in the optimal design process, such as general buckling, panel buckling with either stringers or rings smeared out, local skin buckling, local crippling of stiffener segments. Rectangular or T type stringers and rectangular rings are used for stiffened laminate composite cylindrical shells.

  • PDF

환보강 K형 관이음부의 정적강도에 대한 수치적 연구 (A Numerical Study on Static Strength of Ring-Stiffened Tubular K-joint)

  • 임동주;조현만;류연선;김정태;나원배
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2009년도 정기 학술대회
    • /
    • pp.454-457
    • /
    • 2009
  • 관이음부는 다양한 장점을 가지고 있어 여러 분야에 널리 이용되며, 관이음부의 구조강도를 증가시키기 위해 내부에 환보강재를 설치하는 방법이 대형 강관구조물에서 사용되고 있다. 그러나 환보강 관이음부의 해석 및 설계 자료에 관한 연구는 미흡한 실정이므로, 보강재의 기하학적 특성과 정적강도와의 관계를 규명하고자 한다. 환보강 K형 관이음부의 정적강도에 대하여 수치적으로 검토하기 위해 원형 중공단면의 관이음부를 유한요소 모델링하였고, 각 부재의 직경, 두께 및 폭의 상관관계를 이용한 무차원 계수를 통해 보강재의 위치와 기하학적 형상에 따른 보강효과를 수치적으로 검토하였다.

  • PDF

Effect of stiffeners on failure analyses of optimally designed perforated steel beams

  • Erdal, Ferhat
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.183-201
    • /
    • 2016
  • Perforated steel beams can be optimised by increased beam depth and the moment of inertia combined with a reduced web thickness, favouring the use of original I-section beams. The designers are often confronted with situations where optimisation cannot be carried out effectively, taking account of the buckling risk at web posts, moment-shear transfers and local plastic deformations on the transverse holes of the openings. The purpose of this study is to suggest solutions for reducing these failure risks of tested optimal designed beams under applying loads in a self-reacting frame. The design method for the beams is the hunting search optimisation technique, and the design constraints are implemented from BS 5950 provisions. Therefore, I have aimed to explore the strengthening effects of reinforced openings with ring stiffeners, welded vertical simple plates on the web posts and horizontal plates around the openings on the ultimate load carrying capacities of optimally designed perforated steel beams. Test results have shown that compared to lateral stiffeners, ring and vertical stiffeners significantly increase the loadcarrying capacity of perforated steel beams.

링보강 축대칭 쉘 구조물의 동적 해석 (dynamic Analysis of Ring-Stiffened Axisymmetric Shells)

  • 황철성
    • 한국지진공학회논문집
    • /
    • 제4권2호
    • /
    • pp.83-98
    • /
    • 2000
  • 자오방향 및 주변방향으로 피르스트레스트 하중이 작용된 축대칭 쉘 구조물을 기하학적으로 축대칭인 구조물의 특성을 최대한으로 이용할 수 있도록 회전 링요소로 모델화하였다 보강링 요소의 모델은 축대칭 쉘요소를 이용하였으며 본체 구조물과 절점에서 부착되있는 것으로 가정하여 이의 편심을 고려하였다 유체-구조물의 상호관계는 접촉면에서 구조물의 가속도에 비례한 부가질량으로 표현하였으며 부가질량은 유체를 비점성 비압축 및 비회전을 가정하여 유한요소법에 의해 구하였다 이에 대한 수치해석을 통하여 고유진동해석 및 지진하중을 주하중으로 한 동적해석을 실시하였다 프로그램을 통하여 해석한 결과를 프리스트레스 하중 하에서 고유진동수에 대한 정해와 비교한 결과 20개의 요소로 모델링한 경우에서도 정해와 근접한 해를 얻을 수 있었다 또한 내부유체가 있는 경우와 링보강을 한 경우에 대한 고유진동수를 문헌과 비교한 결과 근접한 해를 얻을 수 있었다.

  • PDF

Load Transferring Mechanism and Design Method of Effective Detailings for Steel Tube-Core Concrete Interaction in CFT Columns with Large-Section

  • Li, Yuanqi;Luo, Jinhui;Fu, Xueyi
    • 국제초고층학회논문집
    • /
    • 제7권3호
    • /
    • pp.223-232
    • /
    • 2018
  • Two novel types of construction detailings, including using the distributive beam and the inner ring diaphragm in the joint between large-section CFT columns and outrigger truss to enhance the transferring efficiency of huge vertical load, and using the T-shaped stiffeners in the steel tube of large-section CFT columns to promote the local buckling capacity of steel tubes, were tested to investigate their working mechanism and design methods. Experimental results show that the co-working performance between steel tube and inner concrete could be significantly improved by setting the distributive beam and the inner ring diaphragm which can transfer the vertical load directly in the large-section CFT columns. Meanwhile, the T-shaped stiffeners are very helpful to improve the local bulking performance of steel tubes in the column components by the composite action of T-shaped stiffeners together with the core concrete under the range of flange of T-shaped stiffeners. These two approaches can result in a lower steel cost in comparison to normal steel reinforced concrete columns. Finally, a practical engineering case was introduced to illustrate the economy benefits achieved by using the two typical detailings.