• 제목/요약/키워드: Ring Rolling Process

검색결과 33건 처리시간 0.029초

타이타늄합금 형상 링 압연공정 연구 (A Study on Profile Ring Rolling Process of Titanium Alloy)

  • 염종택;김정한;이동근;박노광;최승식;이종수
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.223-228
    • /
    • 2007
  • The profile ring rolling process of Ti-6Al-4V alloy was investigated by finite element(FE) simulation and experimental analysis. The process design of the profile ring rolling includes geometry design and optimization of process variables. The geometry design such as initial billet and blank sizes, and final rolled ring shape was carried out with the calculation method based on the uniform deformation concept between the wall thickness and ring height. FEM simulation was used to calculate the state variables such as strain, strain rate and temperature and to predict the formation of forming defects during ring rolling process. Finally, the mechanical properties of profiled Ti-6Al-4V alloy ring product were analyzed with the evolution of microstructures during the ring rolling process.

Ti-6Al-4V합금의 형상 링 압연 공정설계 (Process Design for Profile Ring Rolling of Ti-6Al-4V Alloy)

  • 염종택;김정한;이동근;박노광;최승식;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.357-360
    • /
    • 2007
  • The profile ring rolling process of Ti-6Al-4V alloy was designed by finite element(FE) simulation and experimental analysis. The design includes geometry design and optimization of process variables. The geometry design such as initial billet and blank sizes, and final rolled ring shape was carried out with the calculation method based on the uniform deformation concept between the wall thickness and ring height. FEM simulation was used to calculate the state variables such as strain, strain rate and temperature and to predict the formation of forming defects during ring rolling process. Finally, the mechanical properties of profiled Ti-6Al-4V alloy ring product were analyzed with the evolution of microstructures during the ring rolling process.

  • PDF

대형 Ti-6Al-4V 합금의 Ring-Rolling 공정설계 (Ring-Rolling Design of a Large-Scale Ti-6Al-4V alloy)

  • 염종택;정은정;김정한;이동근;박노광;최승식;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.373-376
    • /
    • 2006
  • The ring rolling design for a large-scale Ti-6Al-4V alloy ring was performed with a calculation method and FEM simulation. The ring rolling design includes geometry design and optimization of process variables. The calculation method was to determine geometry design such as initial billet and blank size, and final rolled ring shape. A commercial FEM code, SHAPE was used to simulate the effect of process variables in ring rolling on the distribution of the internal state variables such as strain, strain rate and temperature. In order to predict the forming defects during ring rolling, the process-map approach based on Ziegler's instability criterion was used with FEM simulation. Finally, an optimum process design to obtain sound Ti-6Al-4V rings without forming defects was suggested through combined approach of Ziegler's instability map and FEM simulation results.

  • PDF

합금강 대형 선회링의 형상환상압연공정 개발 (Development of the Profile Ring Rolling Process for Large Slewing Rings of Alloy Steels)

  • 김광희;석한길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제9회 단조 심포지엄
    • /
    • pp.89-94
    • /
    • 2004
  • Profile ring rolling process for large slewing rings of alley steels are developed. A profile ring with a round groove located asymmetrically on the outer surface is rolled. The process is simulated by the finite element method. The general-purpose commercial finite element analysis software, MSC.Superform, was used. Experiments are carried in the ring rolling machine and compared with the analysis.

  • PDF

링 롤링 공정이 재료에 미치는 영향에 대한 수치해석적 연구 (A Numerical Study on the Effects of Ring Rolling on Materials)

  • 서영진
    • 한국기계가공학회지
    • /
    • 제19권8호
    • /
    • pp.22-27
    • /
    • 2020
  • Ring rolling is a type of forging for manufacturing large-diameter rings. Products manufactured by ring rolling are useful in the aerospace industry because of their excellent mechanical properties and high dimensional accuracy. The major components of the ring rolling process are a mandrel and main roll that shape the inside and outside of the ring, an axial roll that shapes the top and bottom of the ring, and a side rolls to position the ring. In this study, a simulation of ring rolling using finite element method (FEM) was performed. DEFORM, a commercial machining analysis program, was used. Based on the simulations, the mandrel feed force required for machining and the drive torque of the main roll were predicted. It was also possible to identify the metal flow caused by machining.

Ti-6Al-4V 합금의 대형 링 압연공정설계 (Process Design for Large-Scale Ring-Rolling of Ti-6Al-4V Alloy)

  • 염종택;김정한;이동근;박노광;최승식;이종수
    • 소성∙가공
    • /
    • 제16권3호
    • /
    • pp.172-177
    • /
    • 2007
  • The process design for large-scale ring rolling of Ti-6Al-4V alloy was performed by calculation method, processing map approach and FEM simulation. The ring rolling design includes geometry design and optimization of process variables. The calculation method was used to make geometry design such as initial billet and blank sizes, and final rolled ring shape. A commercial FEM code, SHAPE-RR was used to simulate the effect of process variables in ring rolling on the distribution of the internal state variables such as strain, strain rate and temperature. In order to predict the forming defects during ring rolling and the formation of over-heating above $\beta$-transus temperature due to deformation heating, the process-map approach based on Ziegler's instability criterion was used with FEM simulation. Finally, an optimum process design to obtain sound Ti-6Al-4V rings without forming defects was suggested through combined approach of Ziegler's instability map and FEM simulation results.

강소성 유한요소법을 이용한 링 압연 공정에서의 폭 퍼짐량 및 접촉영역 예측 (Prediction of Spread and Contact Region in Ring Rolling Process Using Rigid- plastic Finite Element Method)

  • 고영수;윤환진;김낙수
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2670-2677
    • /
    • 2002
  • The ring rolling process involves three-dimensional non-steady material flow and continuous change of radius and thickness of the ring workpiece. In this study, the deformation analysis and geometric updating algorithm of the ring rolling process were verified by using the three-dimensional rigid-plastic finite element method. Manufacturing processes for plain ring and T-shaped ring were investigated by comparing experiments with simulation results, especially in side spread, load-stroke and pressure distribution, showing a good agreement. It was concluded that the simulation method would be a useful tool for the design of a ring rolling process.

"Ring 생산 Control System의 퍼지 적응제어" (An adaptive fuzzy control for closed-die ring-rolling process)

  • 이용현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1476-1479
    • /
    • 1996
  • 발전설비나 자동차 그리고 항공우주분야에 사용되는 각종 bearing, 원형부품들에 사용되는 ring을 생산하는 방법중, 가장 효과적이고 경제적인 방법은 ring rolling (ring 압연)이다. 이 방법은 직경 50cm에서 2m이상의 원형 ring을 연속적으로 짧은 시간내에 (한 ring당 약 1분) 생산 가능하다. 이제까지의 수학적 모델을 사용한 제어시스템은 ring의 단면적이 사각형인 제품에는 최소한의 오차로 생산 가능하였으나, plant의 생산성과 제품의 다양성을 위하여 ring의 단면적이 복잡한 것을 생산시에는 문제점이 노출되었다. 왜냐하면 기존의 수학적모델이 roll gap 또는 metal forming zone에 근거하여 modelling하였기 때문이다. 본 논문에서는, 이러한 문제점을 고전적인 수학적 모델을 기초로한 adaptive control system의 방법대신에, 축적된 control system설계와 운용 경험을 이용하여 설계한 퍼지제어기 및 그것의 실적용 그리고 그 결과를 소개한다. 실적용 결과는, 제조된 단면적이 상대적으로 복잡한 bearing의 형상이 (filling grad)이 제어기의 제어정도 판단기준이었는데, 99.5%의 형상도를 보임으로서 industry에서 요구하는 제품기준을 만족시켰다. 또한 짧은 제어기 설계 및 on-line optimization 기간 또한 이 제어기의 장점이었다.

  • PDF

강-열점소성 유한요소법을 이용한 알루미늄 링압연 공정 해석 (Analysis of Aluminium Ring Rolling Process Using Thermo-Rigid-Plastic Finite Element Method)

  • 구상완;이종찬;윤수진;김낙수
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.815-822
    • /
    • 2003
  • The ring rolling process involves not only three-dimensional non-steady material flow and continuous change of radius and thickness of the ring workpiece but also heat transfer among workpiece, rolls and environment. In this study, deformation and heat transfer analyses were conducted by using the three-dimensional thermo-rigid-plastic finite element method. Three cases of plain ring rolling process were, respectively, simulated for the predictions of roll forces and the highest temperature zone during the aluminum process that ductile fracture often occurs. In addition, to prevent fishtail phenomena of the ring workpiece, axial rolls were used for this study.

환상압연 공정의 실용적 모델링 방법에 관한 연구 (A Study on the Practical Finite Element Modeling Method for Ring Rolling)

  • 이두규;김응주;이용신
    • 소성∙가공
    • /
    • 제24권3호
    • /
    • pp.161-166
    • /
    • 2015
  • The finite element method has been widely used in the analysis of ring rolling. For ring rolling it requires a high computational expense due to the non-steady state material flow characteristics of the process. The high computational expense causes the finite element analysis to be impractical for industrial applications. In the current study, we aim to develop a practical implicit finite element modeling method for ring rolling. This method uses a step-wise steady state assumption and is called the “Stepped method”. The stepped method divides the whole process time of unsteady-state flow model into a finite number of steady-state models. It then solves the process at several specific time steps until convergence is reached. In order to confirm the performance and validity of the newly proposed stepped method, the result from the stepped method were compared to the results from a Lagrangian finite element method and to results from experiments reported in the literature.