• Title/Summary/Keyword: Ring Radiator

Search Result 13, Processing Time 0.016 seconds

Quadruple Band-Notched Trapezoid UWB Antenna with Reduced Gains in Notch Bands

  • Jin, Yunnan;Tak, Jinpil;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • A compact ultra-wide band antenna with a quadruple band-notched characteristic is proposed. The proposed antenna consists of a slotted trapezoid patch radiator, an inverted U-shaped band stop filter, a pair of C-shaped band stop filters, and a rectangular ground plane. To realize the quadruple notch-band characteristic, a U-shaped slot, a complementary split ring resonator, an inverted U-shaped band stop filter, and two C-shaped band stop filters are utilized in this antenna. The antenna satisfies the -10 dB reflection coefficient bandwidth requirement in the frequency band of 2.88-12.67 GHz, with a band-rejection characteristic in the WiMAX (3.43-3.85 GHz), WLAN (5.26-6.01 GHz), X-band satellite communication (7.05-7.68 GHz), and ITU 8 GHz (8.08-8.87 GHz) signal bands. In addition, the proposed antenna has a compact volume of $30mm{\times}33.5mm{\times}0.8mm$ while maintaining omnidirectional patterns in the H-plane. The experimental and simulated results of the proposed antenna are shown to be in good agreement.

Wide-Beam Circularly Polarized Crossed Scythe-Shaped Dipoles for Global Navigation Satellite Systems

  • Ta, Son Xuat;Han, Jea Jin;Park, Ikmo;Ziolkowski, Richard W.
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.224-232
    • /
    • 2013
  • This paper describes composite cavity-backed crossed scythe-shaped dipoles with wide-beam circularly polarized (CP) radiation for use in Global Navigation Satellite Systems. Each branch of the dipole arm contains a meander line, with the end shaped like a scythe to achieve a significant reduction in the size of the radiator. For dual-band operation, each dipole arm is divided into two branches of different lengths. The dipoles are crossed through a $90^{\circ}$ phase delay line of a vacant-quarter printed ring to achieve CP radiation. The crossed dipoles are incorporated with a cavity-backed reflector to make the CP radiation unidirectional and to improve the CP radiation beamwidth. The proposed antennas have broad impedance matching and 3-dB axial ratio bandwidths, as well as right-hand CP radiation with a wide-beamwidth and high front-to-back ratio.

Design of a Circular Polarization Microstrip $12\times12$ Series-Parallel Array Antenna at 10 GHz (원형 편파 마이크로스트립 $12\times12$ 직-병렬 배열 안테나 설계)

  • 이영주;정명숙;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.1
    • /
    • pp.26-36
    • /
    • 2000
  • A circularly polarized $12\times12$ array with application in the satellite communications is designed at 10 GHz. The radiator is an aperture-coupled ring patch, which is suitable of large arrays. The element spacing of the array is chosen to be $0.7\lambda_0$to maintain the main beam in the broadside direction. The array is a sequential array constructed on a series-parallel feed network to obtain high gain and low axial ratio. Measurement results for the array, acquired by experiments in the compact range of POSTECH, showed a directivity of 27.88 dB, a high gain of 25.55 dB, an efficiency of 60%, an axial ratio of 1.74 dB, and a side-lobe level of -13 dB. The bandwidth of the array was 43% when the VSWR was 2, and the bandwidth of the axial ratio was 16%.

  • PDF