• Title/Summary/Keyword: Ring Antenna

Search Result 158, Processing Time 0.027 seconds

The Design of Rectangular Microstrip Patch Antenna Using The Ring Feed Line (링 급전선로를 이용한 Rectangular Microtrip Patch Antenna 설계)

  • 고영혁;양규식;이종악
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.5
    • /
    • pp.435-441
    • /
    • 1989
  • The three rectangular microstrip patch antenna of Resonant length, lambda/2 or , between two slot is designed by using the ring feed line, and the radiation pattern characteristic is showen. In case of the antenna of resonant length lambda/2 the radation pattern is shown at each antenna element, in the antenna of resonant length it is shown among patch antenna element.

  • PDF

Compact Dual-Band Half-Ring-Shaped Bent Slot Antenna for WLAN and WiMAX Applications

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.199-204
    • /
    • 2017
  • A compact dual-band half-ring-shaped (HRS) bent slot antenna fed by a coplanar waveguide for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications is presented. The antenna consists of two HRS slots with different lengths and widths. The two HRS slots are connected through an arc-shaped slit, and the upper HRS slot is bent in order to reduce the size of the antenna. The optimized dual-band HRS bent slot antenna operating in the 2.45 GHz WLAN and 3.5 GHz WiMAX bands is fabricated on an FR4 substrate with dimensions of 30 mm by 30 mm. The slot length of the proposed dual-band slot antenna is reduced by 35%, compared to a conventional dual-band rectangular slot antenna. Experimental results show that the proposed antenna operates in the frequency bands of 2.40-2.49 GHz and 3.39-3.72 GHz for a voltage standing wave ratio of less than 2, and measured gain is larger than 1.4 dBi in the two bands.

A novel circular fractal ring UWB monopole antenna with dual band-notched characteristics

  • Kayhan Celik
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.218-226
    • /
    • 2024
  • This paper presents a novel circular fractal ring monopole antenna for ultra-wideband (UWB) hardware with dual band-notched properties. The proposed antenna consists of four crescent-shaped nested rings, a tapered feeding line at the front of the dielectric material, and a semicircular ground plane on the backside. In this design, the nested rings are used both as a radiation element and a band rejection element. The proposed antenna has a bandwidth of 9.03 GHz, which works efficiently in the range of 2.63 GHz-11.66 GHz with the dual notched bands of Worldwide Interoperability for Microwave Access (WiMAX) at 3.15 GHz-3.66 GHz and wireless local area network (WLAN) at 4.9 GHz-5.9 GHz, respectively. The antenna has a compact size of 20 mm × 30 mm × 1 mm (0.177 × 0.265 × 0.0084 λ0) and is implemented using a flame-retardant type 4 (FR4) material. It has a maximum gain of approximately 4 dB in its operating range, and experimental results support the simulation predictions with high accuracy. The findings of this study imply that the designed antenna can be utilized in UWB applications.

A Unidirectional Beam Antenna using a Probe Excited Circular Ring near the Reflector

  • Phongcharoenpanich, Chuwong;Lamultree, Suthasinee;Kosulvit, Sompol;Krairiksh, Monai
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.545-548
    • /
    • 2002
  • This paper proposes a unidirectional beam antenna using a probe excited circular ring near the reflector. The antenna structure is simple. The radiation characteristics of the antenna fur various spacing between a probe excited circular ring and the reflector are analyzed. These characteristics are also compared with the conventional single aperture near the reflector. It is found that the proposed structure yields better characteristics than the conventional structure. The numerical results of the radiation pattern, elevational beam peak, beamwidth, and maximum directivity are investigated. The result of the analysis is very useful to design the antenna of the high directivity with unidirectional beam.

  • PDF

A Single-Feeding Port HF-UHF Dual-Band RFID Tag Antenna

  • Ha-Van, Nam;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.233-237
    • /
    • 2017
  • In this paper, a dual-band high frequency (HF) and ultra-high frequency (UHF) radio-frequency identification (RFID) tag antenna is presented that operates in the 13.56 MHz band as well as in the 920 MHz band. A spiral coil along the edges of the antenna substrate is designed to handle the HF band, and a novel meander open complementary split ring resonator (MOCSRR) dipole antenna is utilized to generate the UHF band. The dual-band antenna is supported by a single-feeding port for mono-chip RFID applications. The antenna is fabricated using an FR4 substrate to verify theoretical and simulation designs, and it has compact dimensions of $80mm{\times}40mm{\times}0.8mm$. The proposed antenna also has an omnidirectional characteristic with a gain of approximately 1 dBi.

Design of S-Band Phased Array Antenna with High Isolation Using Broadside Coupled Split Ring Resonator

  • Hwang, Sungyoun;Lee, Bomson;Kim, Dong Hwan;Park, Joon Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.108-116
    • /
    • 2018
  • In this paper, a method of designing a Vivaldi type phased array antenna (PAA) which operates at S-band (2.8-3.3 GHz) is presented. The presented antenna uses broadside coupled split ring resonators (BC-SRRs) for high isolation, wide field of view, and good active S-parameter characteristics. As an example, we design a $1{\times}8$ array antenna with various BC-SRR structures using theory and EM simulations. The antenna is fabricated and measured to verify the design. With the BC-SRR implemented between the two radiating elements, the isolation is shown to be enhanced by 6 dB, up to 23 dB. The scan angle is shown to be within ${\pm}53^{\circ}$ based on a -10 dB active reflection coefficient. The operation of the scan angle is possible within ${\pm}60^{\circ}$ with a little larger reflection coefficient (-7 dB to -8 dB). The proposed design with BC-SRRs is expected to be useful for PAA applications.

Circularly Polarized Square Ring Slot Antenna with Arrow-Shaped Structure

  • Sung, Young-Je
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.506-509
    • /
    • 2009
  • A novel design of a compact square-ring slot microstrip antenna for achieving circular polarization (CP) operation is proposed and experimentally studied. By using an arrow-shaped slot structure as a radiating element, the resonant frequency of the proposed antenna is significantly lowered, which can lead to a large size reduction for fixed frequency operation. The CP radiation characteristics are achieved by loading with proper asymmetry, which can be placed diagonally. A prototype of the proposed design is implemented and its performance is measured. Measured results show that radiation patterns with good CP characteristics are obtained at the resonant frequency.

Design and Fabrication of Dual-Ring Monopole Antenna for Wideband Characteristics (광대역 특성을 갖는 이중 원형 링 모노폴 안테나의 설계와 제작)

  • Yoon, Joong-Han;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.9
    • /
    • pp.1285-1291
    • /
    • 2013
  • In this paper, a double circular ring monopole antenna for wideband applications is designed and fabricated. The proposed antenna is based on a planar monopole design, and composed of double circular ring of radiating patches and ground plane to obtain the wideband characteristics. To get the optimized parameters, we used the simulator, Ansoft's High Frequency Structure Simulator(HFSS) and found the parameters that effect antenna characteristics. Using the obtained parameters, the proposed antenna is fabricated. The fabricated antenna is measured at the operating frequencies, and the return loss coefficient, gain, and radiation patterns are determined. The results of measurement, -10dB impedance bandwidth, measured return loss is 4,530 MHz(2,510-7,040 MHz) and antenna peak and average gains for the frequencies are obtained 0.71~3.38 dBi, -3.85~0.3 dBi, respectively. In case of radiation patterns, the proposed antenna displays nearly omnidirectional radiation characteristics in the E-plane, and monopole-like radiation pattern characteristics in the H-plane.

Electrically Small Square Loop Antenna with SRR (Split Ring Resonator) Cover Structure (SRR (Split Ring Resonator) 덮개 구조를 갖는 전기적 소형 정사각형 루프 안테나)

  • Kim, Yong-Jin;Kim, Jung-Han;Lee, Hong-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.6
    • /
    • pp.52-58
    • /
    • 2008
  • In this paper, electrically small square loop antenna with SRR (Split Ring Resonator) cover structure is built and tested. The proposed antenna has very small size, ka = 0.34 by Chu limit. The experimental result shows that the resonant frequency and impedance bandwidth($VSWR{\leq}2$) are 906MHz and 5.8MHz (901.7 - 907.5MHz), respectively. The proposed antenna is matched and designed by equivalent circuit model. The proposed antenna is fabricated simple structure without additional matching network and printed on a Teflon substrate without ground plane. Therefore, it has advantages of low cost, small size, and light weight and will be applied to wireless communication systems where small antennas are required.

Design of a UWB Antenna with Band-Notch Function

  • Fanli, Zeng;Lee, Jae-Won;Kim, Chul-Hee;Choi, Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • In this paper, a compact wideband antenna with a band-notch function is proposed. It operates over the UWB band with a band-stop characteristic. To increase the impedance bandwidth, a ring-shaped radiator is used. By attaching a circular stub to the ring-shaped radiator, the band-notch performance is obtained. The proposed antenna operates over a frequency range from 2.7 GHz to 11 GHz to satisfy the 10-dB return-loss requirement and provides band-stop performance in the frequency band from 5.15 GHz to 6.1 GHz. Experimental results reveal that the proposed antenna exhibits good radiation performance and is suitable for UWB applications.