• Title/Summary/Keyword: Rigid polyurethane foam

Search Result 58, Processing Time 0.027 seconds

Effect of Halogen-phosphours Flame Retardant Content on Properties of Rigid Polyurethane Foam (인-할로겐계 난연제가 경질폴리우레탄 폼의 물성에 미치는 영향)

  • Kim, Chang Bum;Kim, Sang Bum
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.77-81
    • /
    • 2013
  • In this study, the effect of halogen-phosphorus flame retardant on the flame retardancy and the mechanical properties of the rigid polyurethane foam (PUF) were studied. The reduced compressive strength and glass transition temperature of PUF decreased as contents of the flame retardant increased. After aging, the reduced compressive strength and glass transition temperature of PUF increased due to the reaction of unreacted isocyanate. The cell morphology effect of these flame retardants was also investigated using scanning electron microscope. The results of TCEP added to PUF showed an unstable and uneven cell morphology, leading to the increase of in thermal conductivity. The flame retardancy of vacuum aged PUF decreased compared to that of fresh PUF.

Physical Properties of Rigid Polyurethane Foams Prepared by Co-Blowing Agents (Co-blowing agent에 따른 경질 폴리우레탄 폼의 물성 변화 연구)

  • Kim Sang Bum;Koh Sung Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.1-7
    • /
    • 2004
  • The physical properties of rigid polyurethane foam(PUF) synthesized using various types of blowing agents such as water, HFC-365mfc, HFC-245fa, HCFC-l4lb, CFC-11 and n-pentane were studied. The blending effect of blowing agents were also studied. The thermal conductivity, reaction rate, and cell morphology of the PUF with various blending ratio of blowing agents were investigated. The PUF blown by water shows the highest compressive strength among other single blowing agents. The thermal conductivity of PUFs blown by HFC-245fa and HFC-365mfc are close to that of PUFs blown by CFC-11. When HFC-365mfc was mixed with HFC-245fa(30mo1e$\%$) as coblowing agent, the mechanical property shows the highest value among other coblowing agents. It is that the thermal conductivity of PUFs depends on cell size of PUFs as well as thermal conductivity of blowing agent in gaseous form.

  • PDF

Flame Retardant Property of PU by the Addition of Phosphorous Containing Polyurethane Oligomers (폴리우레탄을 인계화합물로 해중합한 올리고머의 난연성)

  • Jung, Sunyoung;Kang, Sungku;Cho, Ilsung;Koh, Sungho;Kim, Younhee;Chung, Yeongjin;Kim, Sangbum
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.376-380
    • /
    • 2007
  • Used polyurethane (PU) was chemically degraded by the treatment with flame retardants such as tris(1,3-chloro-2-propyl) phosphate (TCPP), triethyl phosphate (TEP), and trimethyl phosphate (TMP). Analysis of FT-IR and P-NMR showed that the degraded products (DEP) contained oligourethanes. Rigid polyurethane foam was produced using the DEP as flame retardants. The flammability and thermal stability of recycled rigid polyurethane were investigated. The mechanical properties such as compressive strength of recycled polyurethane were also studied. The recycled polyurethane reduced flammability and enhanced thermal stability over intrinsic polyurethane. Mechanical strength of recycled polyurethane also shows as high as that of intrinsic polyurethane. In order to evaluate flame retardant properties of the recycled polyurethane foams with various amounts of DEP, heat release rate (HRR) of the foam was measured by cone calorimeter. Scanning electron micrograph of recycled PU showed a uniform cell morphology as a intrinsic PU.

Effects of Silicone Surfactant on the Cell Size and Thermal Conductivity of Rigid Polyurethane Foams by Environmentally Friendly Blowing Agents

  • Han, Mi-Sun;Choi, Seok-Jin;Kim, Ji-Mun;Kim, Youn-Hee;Kim, Woo-Nyon;Lee, Heon-Sang;Sung, Joon-Yong
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.44-50
    • /
    • 2009
  • Rigid polyurethane foams (PUF)s were synthesized with environmentally friendly blowing agents such as a cyclopentane/distilled water (10.0/1.0, pphp) mixture and distilled water only for four different silicone surfactants having different silicone/polyether ratios. An attempt was made to reduce the thermal conductivities of the PUF samples by varying the concentration and the silicone/polyether ratio of the various silicone surfactants. The scanning electron microscopy (SEM) results indicated an optimum concentration of the silicone surfactant of about 1.5 to 2.5 phpp for various surfactants to reduce the cell size and lower the thermal conductivity. The silicone surfactant having a higher silicone/polymer ratio showed a smaller cell size and, therefore, demonstrated the lower thermal conductivity of the PUF samples. From the relation between the thermal conductivity and the cell size of the PUF samples, the smaller cell size improved the thermal insulation property of the rigid PUF for both the PUF samples blown by the cyclopentane/distilled water (10.0/1.0, pphp) mixture and distilled water only. If the blowing agent is fixed, then the cell size is an important factor to decrease the thermal conductivity of the PUF samples. These results indicated that rigid PUF samples having lower thermal conductivity can be obtained by choosing a silicone surfactant containing a higher silicone/polyether ratio, as well as an optimum content of the surfactant.

Effects of Chain Extender and Inorganic Filler on the Properties of Semi-Rigid Polyurethane Foams (반경질 폴리우레탄 발포체의 물성에 대한 사슬 연장제와 무기 충전제의 영향)

  • Cha, Gook-Chan;Song, Jeom-Sik;Lee, Suk-Min;Mun, Mu-Seong
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • The physical properties of polymeric foams depend on the density of foams, physical properties of base polymers, the content of open cells, and cell structures including the size and its distribution, the shape of cell, and the thickness of skin layer. The foam density is affected by the chemistry of raw materials, the concentration of crosslinking agent and the blowing agent as well as the operating parameters during production process. In this study, the basic formulations of foams are composed of polyester polyol, MDI, amine catalyst, tin catalyst, silicone surfactant, and water. Cross-linking density of polyurethane was increased by using chain extenders. Also, the mechanical properties of polyurethane foam were improved by using the inorganic fillers (silica 1,2 and talc 1,2) having different $SiO_2$ contents and particle sizes. We investigated the properties of modulus, tensile strength, compressive strength and hardness of foams obtained by changing kind of inorganic filler and chain extender, and observed the distribution of inorganic filler as well as variation of cell size within the foams by electron microscopy.

Study on Reaction Behavior of Rigid Polyurethane Foam with Various Types and Contents of Gelling Catalysts (젤화 촉매의 종류 및 함량에 따른 경질 폴리우레탄 폼의 반응거동에 관한 연구)

  • Eom, Se Yeon;Lee, Hyeong Il;Lee, Kee Yoon
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.210-218
    • /
    • 2015
  • The reaction behavior of rigid polyurethane foams were studied on the effects of gelling catalysts of amine type, such as; dimethylcyclohexyl amine (DMCHA) and of potassium type, such as; potassium octoate (PO). Rigid polyurethane foams were provided with polymeric 4,4'-diphenylmethane diisocyanate, polyester polyol, silicone surfactant, blowing agent and a few gelling catalysts. As the contents of catalyst, DMCHA increased from 0 to 2.0 g, the reaction time decreased from ca. 330 to ca. 35 sec and due to the exothermic reaction, the maximum temperature increased from ca. 217 to ca. $234^{\circ}C$, respectively. As the contents of PO increased from 0 to 2.5 g, the reaction time decreased from ca. 79 to ca. 38 sec and the maximum temperature increased from ca. 182 to ca. $271^{\circ}C$, respectively. The kinetic parameters were calculated and the conversions were based on the temperature rising method of adiabatic process. As the content of DMCHA increased, the rate constant $k_0$ increased. But in the case of PO catalyst, $k_0$ did hardly depend upon its amount, and showed us similar reaction rate constants.

Effect of Isocyanate Index on the Physical Properties of Rigid Polyurethane Foam under Sea Water (해수에서 이소시아네이트 인덱스 변화가 경질폴리우레탄 폼의 물성에 미치는 영향)

  • Kang, Sungkoo;Cho, Ilsung;Kim, Sangbum
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.427-431
    • /
    • 2008
  • The rigid polyurethane foams (PUF) were prepared using polyols with 90, 110, 130, and 150 isocyanate index. The effect of sea water on the physical properties of PUF with the increase in isocyanate (NCO) index and ageing time was investigated. Tensile strengths and compressive strengths of the PUFs decreased up to 10% and 7% with an increase in ageing time, respectively. Cell morphology of the PUF under sea water was turned out to be the same as that in the ambient condition. It was observed that $T_g$ and tensile modulus of the PUF under sea water increased. The results showed an additional cross-link reaction of non-reacted MDI and the change of NCO peak as observed from FT-IR spectrum.

Mechanical Properties and Flame Retardancy of Rigid Polyurethane Foam Using New Phosphorus Flame Retardant (새로운 인계 난연제 합성과 이를 이용한 경질 폴리우레탄 폼의 난연성 및 물성 분석)

  • Lee, Byoung Jun;Kim, Sang Bum
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.577-582
    • /
    • 2016
  • In this study, we compared and analyzed the flame retardancy and mechanical properties of three different rigid polyurethane foams (RPUF) containing noble non-halogen phosphorus flame retardant (BHP-RPUF) or halogen-phosphorus flame retardant (TCPP-RPUF) or no flame retardant material (Pure-RPUF). The noble phosphorus-based flame retardant, bis(3-(3-hydroxypropoxy)propyl) phenyl phosphate (BHP), was synthesized by the reaction between disodium phenyl phosphate and 3-chloro-1-propanol. Through universal testing machine (UTM) experiments, the compressive strength of BHP-RPUF was similar to that of TCPP-RPUF. From the result of foam morphology analysis, it was confirmed that BHP-RPUF has the lowest thermal conductivity of $0.023W/m{\cdot}K$. We also measured the size of air bubbles using reaction velocity and SEM, and analyzed how they affect the thermal conductivity. In addition, the heat-resisting property was investigated through TGA analysis. The limited oxygen index (LOI) test confirmed that BHP had the ability to increase the flame retardancy of RPUF.