• Title/Summary/Keyword: Rigid plastic Finite Element Method

Search Result 250, Processing Time 0.024 seconds

A New Model for Predicting Width Spread in a Roughing Mill - Part II: Application to Flat Rolling (조압연 공정의 판 폭 퍼짐 예측 모델 - Part II : 평판에의 적용)

  • Lee, D.H.;Lee, K.B.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.145-150
    • /
    • 2014
  • Precision control of the slab is crucial for product quality and production economy in hot strip mills. The current study presents a new model for predicting width spread of a slab with a rectangular cross section during roughing. The model is developed on the basis of the extremum principle for a rigid plastic material and a three dimensional admissible velocity field. This model incorporates the effect of process variables such as the shape factor and the ratio of width to thickness. We compare the results of this model to 3-D finite element (FE) process simulations and also to results from a previous study.

Design of a Impeller Hub Cold Forging Process (토크 컨버터용 임펠러 허브의 냉간단조공정설계)

  • Kim, Young-Suk;Kim, Hyun-Soo;Kim, Chan-Il;Choi, Suk-Tak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.213-219
    • /
    • 2000
  • A impeller hub is usually made through three forging processes : forward extrustion, upsetting and finishing. The finishing process is closed die forging in which the load increases abruptly at the final stage, resulting in underfilling in the finished product due to insufficient load capacity of the press. In this study, the rigid-plastic finite element analysis was applied to the impeller hub forging process in order to optimize process and to estimate required load. As a result, two kind of improvements for the process were suggested to reduce the load requirement in the finishing process.

  • PDF

Study of the Interaction between a Tracked Vehicle and the terrain (궤도차량과 토양의 상호관계에 대한 연구)

  • 박천서;이승종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.144-147
    • /
    • 2001
  • The planar tracked vehicle model used in this investigation consists of two kinematically decoupled subsystem, i.e., the chassis subsystem and the track subsystem. The chassis subsystem include the chassis frame, sprocket, idler and rollers, while the track subsystem is represented as a closed kinematic chain consisting of rigid links interconnected by revolute joints, In this paper, the recursive kinematic and dynamic formulation of the tracked vehicle is used to find the vertical forces and the distances of the certain track moved in the driving direction along the track. These distances and vertical forces obtained are used to calculate the sinkage of a terrain. The FEM is adopted to analyze the interaction between the tracked vehicle and terrain. The terrain is represented by a system of elements with specified constitutive relationships and considered as a piecewise linear elastic, plastic and isotropic material. When the tracked vehicle is moving with different speeds on the terrain, the elastic and plastic deformations and the maximum sinkage for the four different types of a isotropic soil are simulated.

  • PDF

Influence of Process Parameters on the Forming Compatibility in Composite Extrusion Rods (복합압출재료봉의 공정변수가 성형 적합성에 미치는 영향)

  • Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.80-86
    • /
    • 2009
  • This paper presents the plastic inhomogeneous deformation behavior of bimetal composite rods during the axisymmetric and steady-state extrusion process through a conical die. The rigid-plastic FE model considering frictional contact problem was used to analyze the co-extrusion process with material combinations of Cu/Al. Different cases of initial geometry shape for composite material were simulated under different conditions of co-extrusion process, which includes the interference and frictional conditions. From the simulation results, the sleeve cladding rate at the core/sleeve interface was recorded as a distribution of diameter ratio and interference conditions, which will be useful for the investigations of the bonding process during co-extrusion process. In addition, the results of the co-extrusion, connected with the results of the variations of diameter rate and average contact pressure, demonstrate a good agreement and present the possibility of describing the parameters of the plastic zones in non-uniform deformation of these type of composite materials.

A Study on Stucture of CAD / CAPP System in th e Heading Process Using Rigid-Plastic Finite Element Analysis (강소성 유한 요소법을 이용한 냉간 2단 헤딩가공에 있어서 CAD / CAPP 시스템의 구축에 대한 연구 1))

  • 신영우
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.1
    • /
    • pp.53-63
    • /
    • 1994
  • The conventional cold-heading process for the production of a bolt-shaped product is composed of some process and two or three blows heading. The strength of a bolt-shaped product produced by multi-blow heading depends on the working conditions of the heading process such as preforming die angle, corner-radius of the necked portion of product, and the reduction in height during pre-forming. Arigid-plastic finite-element program(RDHPSC) has been coded and the program testified by comparison with the results of experimentation. A method of testing the optimum die-conditions in the double-blow heading process by use of RDHPSC analysis is discussed a fundamental structures of CAD/CAPP system for two-blow heading process is discussed.

  • PDF

Finite Element Analysis for the Relation between Hardness and Effective Strain (경도-유효변형률 관계에 관한 유한요소 해석)

  • Kwon, Soon-Goo;Park, Joon-Hong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.125-130
    • /
    • 1999
  • It is already known that hardness value of cold-forged product is in close conjunction with its effective strain. This paper presents the method to predict the relation between effective strains and hardness values by using FE-simulation of hardness test from the conception that hardness indicates resistance to plastic deformation. The results of FE-simulation for the material with pre-strain arc compared with those of experiments of the references to show the feasibility of the proposed method.

  • PDF

Preform Design Technique by Tracing The Material Deformation Behavior (재료의 변형거동 추적을 통한 예비형상 설계)

  • Hong J. T.;Park C. H.;Lee S. R.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.91-94
    • /
    • 2004
  • Preform design techniques have been investigated in efforts to reduce die wear and forming load and to improve material flow, filing ratio, etc. In hot forging processes, a thin deformed part of a workpiece, known as a flash, is formed in the narrow gap between the upper and lower tools. Although designers make tools that generate a flash intentionally in order to improve flow properties, excessive flash increases die wear and forming load. Therefore, it is necessary to make a preform shape that can reduce the excessive flash without changing flow properties. In this paper, a new preform design technique is proposed to reduce the excessive flash in a metal forging process. After a finite element simulation of the process is carried out with an initial billet, the flow of material in the flash region is traced from the final shape to the initial billet. The region belonging to the flash is then easily found in the initial billet. The finite element simulation is then carried out again with the modified billet from which the selected region has been removed. In several iterations of this technique, the optimal preform shape that minimizes the amount of flash without changing the forgeability can be obtained.

  • PDF

Preform Design Technique by Tracing the Material Deformation Behavior (재료의 변형거동 추적을 통한 예비형상 설계)

  • Hong J. T.;Park C. H.;Lee S. R.;Yang D. Y.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.503-508
    • /
    • 2004
  • Preform design techniques have been investigated to reduce die wear and forming load and to improve material flow, filling ratio, etc. In hot forging processes, a thin deformed part of a workpiece, known as a flash, is formed in the narrow gap between the upper and lower tools. Although designers make tools that generate a flash intentionally in order to improve flow properties, excessive flash increases die wear and forming load. Therefore, it is necessary to make a preform shape that can reduce the excessive flash without changing flow properties. In this paper, a new preform design technique is proposed to reduce the excessive flash in a metal forging process. After a finite element simulation of the process is carried out with an initial billet, the flow of material in the flash region is traced from the final shape to the initial billet. The region belonging to the flash is then easily found in the initial billet. The finite element simulation is then carried out again with the modified billet from which the selected region has been removed. In several iterations of this technique, the optimal preform shape that minimizes the amount of flash without changing the forgeability can be obtained.

A Study on the Improvement of Forming Processes of Valve-Spring Retainer (Valve-Spring Retainer의 성형공정개선에 관한 연구)

  • 오현석;황병복;이호용
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.145-155
    • /
    • 1996
  • The conventional five-stage forming processes of the valve-spring retainer are simulated using the rigid-plstiv finite element method. As a design criterion the improved process should satisfy the maximum forging load during processes within the loading limit of the available press and should not induce any geometrical defects. hollow bars are recommended as initial billets to skip the heading and piercing processes. Through various simulations it is found out that the one stage process results in less forging loads and better strain distributions.

  • PDF

Analysis of 3-D Superplastic Forming/Diffusion Bonding Process Using a Hierarchical Contact Searching Method(I) (계층적 접촉 탐색방법을 이용한 3-D 초소성 성형/확산접합의 공정설계(I))

  • Kang, Y.K.;Song, J.S.;Hong, S.S.;Kwon, Y.N.;Lee, J.H.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.138-143
    • /
    • 2007
  • Superplastic forming/diffusion bonding (SPF/DB) processes were analyzed using a 3-D rigid visco-plastic finite element method. A constant-triangular element based on membrane approximation and an incremental theory of plasticity are employed for the formulation. The coulomb friction law is used for interface friction between tool and material. Pressure-time relationship for a given optimal strain rate is calculated by stress and pressure values at the previous iteration step. In order to improve the contact searching, hierarchical search algorithm has been applied and implemented into the code. Various geometries including sandwich panel and 3 sheet shape for 3-D SPF/DB model are analyzed using the developed program. The validity fer the analysis is verified by comparison between analysis and results in the literature.