• Title/Summary/Keyword: Rigid channel

Search Result 40, Processing Time 0.024 seconds

A Spatial Audio System Using Multiple Microphones on a Rigid Sphere

  • Lee, Tae-Jin;Jang, Dae-Young;Kang, Kyeong-Ok;Kim, Jin-Woong;Jeong, Dae-Gwon;Hamada, Hareo
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.153-165
    • /
    • 2005
  • The main purpose of a spatial audio system is to give a listener the same impression as if he/she were present in a recorded environment. A dummy head microphone is generally used for such purposes. Because of its human-like shape, we can obtain good spatial sound images. However, its shape is a restriction on its public use and it is difficult to convert a 2-channel recording into multi-channel signals for an efficient rendering over a multi-speaker arrangement. In order to solve the problems mentioned above, a spatial audio system is proposed that uses multiple microphones on a rigid sphere. The system has five microphones placed on special points of the rigid sphere, and it generates audio signals for headphone, stereo, stereo dipole, 4-channel, and 5-channel reproduction environments. Subjective localization experiments show that front/back confusion, which is a common limitation of spatial audio systems using the dummy head microphone, can be reduced dramatically in 4-channel and 5-channel reproduction environments and can be reduced slightly in a headphone reproduction.

  • PDF

Numerical evaluating for the rigid and semi-rigid connection of I-Shaped beams to tubular columns

  • Shohreh Sohaei;Mehrzad TahamouliRoudsari;Parham Memarzadeh
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.305-323
    • /
    • 2024
  • Previous experimental studies have effectively demonstrated the remarkable efficiency of the stiffened channel link in connecting circular columns and I-shaped beams. This research aims to present design criteria and assess the seismic properties of this specific connection type through numerical modeling. Various parameters, including stiffener type and geometric properties of the stiffened channel element, were duly taken into account. The findings from over 136 nonlinear finite element analyses (FEAs) reveal that the recommended detailing scheme reliably satisfies all the regulations specified for rigid beam-to-column connections in special moment frames.

Effective layout of loudspeakers in a multichannel sound system for real time virtual sound reproduction (실시간 가상음장재현을 위한 멀티채널 시스템의 효과적인 스피커 배치)

  • Lee, Chan-Joo;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.455-461
    • /
    • 2000
  • A multichannel signal processing algorithm for generating real time virtual sound field was proposed. Evaluation of the system performance was done by an objective function that minimizes the difference between the real and generated signals at each control point. Since impulse responses at the surface of a rigid sphere show characteristics similar to those of real HRTF, a rigid sphere model was adequate to simulate the multichannel sound system. A two-channel system and two four-channel systems were studied with various combinations of source locations and speaker positions. The results show that a two-channel system has its best configuration when the angle spanned by the loudspeakers is less than $60^{\circ}$. In the case of four-channel systems, the overall performance was highly improved with one pair of speakers fixed at an optimal position. Left/right symmetry was a reasonable choice, but the additional front/back symmetry degraded the performance of system.

  • PDF

Percolation Approach to the Morphology of Rigid-Flexible Block Copolymer on Gas Permeability

  • 박호범;하성룡;이영무
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.69-70
    • /
    • 1997
  • Polyimides and related polymers, when synthesized from aromatic monomers, have generally rigid chain structures resulting in a low gas permeability. The rigidity of polymer chains reduces the segmental motion of chains and works as a good barrier against gas transport. To overcome the limit of use as materials of gas separation membranes due to low gas permeability, block copolymers with the incorporation of flexible segments like siloxane linkage and ether linkage have been studied. These block copolymers have microphase-separated structures composed of microdomains of flexible poly(dimethylsiloxane) or polyether segments and of rigid polyimides segments. In case of rigid-flexible block copolymers, the characteristics of both phases for gas permeation are of great difference. The permeation of gas molecules occurs favorably through microdomains of flexible segments, whereas those of rigid segments hinder the permeation of gas molecules. Accordingly the increase of content of flexible segments in a rigid polymer matrix will increase the gas permeability of the membrane linearly. However, this prediction does not satisfy enough many experimental results and in particular the drastic increase of the permeability is observed in a certain volume fraction. It was proposed that the gas transport mechanism is dominated by diffusion rather than gas solubility in a certain content of flexible phase if solution-diffusion mechanism is adopted. However, the transition from solubility-dependent to diffusion-dependent cannot be explained by the understanding of mechanism itself. Therefore, we consider an effective chemical path which permeable phase can form in a microheterogenous medium, and percolation concept is introduced to describe the permeability transition at near threshold where for the first time a percolation path occurs. The volume fraction of both phases is defined as V$_{\alpha}$ and V$_{\beta}$ in block copolymers, and the volume of $\beta$ phase in the threshold forming geometrically a traversing channel is defined as V$_{\betac}$. The formation mechanism of shortest chemical channel is schematically depicted in Fig. 1.

  • PDF

Analysis and tests of flexibly connected thin-walled channel frames

  • Tan, S.H.;Seah, L.K.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.269-284
    • /
    • 1994
  • The analysis and tests of thin-walled channel frames including nonlinear flexible or semi-rigid connection behaviour is presented. The semi-rigid connection behaviour is modelled using a mathematical approximation of the connection flexibility-moment relationship. Local instability such as local buckling and torsional flexural buckling of the member are included in the analysis. The full response of the frame, up to the collapse load, can be predicted. Experimental investigation was carried out on a series of simple double storey symmetrical frames with the purpose of verifying the accuracy and validity of the analysis. Agreement between the theoretical and experimental results is acceptable. The investigation also shows that connection flexibility and local instability such as local buckling and torsional flexural buckling can affect the behaviour and strength of thin-walled frames significantly. The results can also provide further insight into the advanced study of practical structures where interaction between flexible connections and phenomenon associated with thin-walled members are present.

Prediction of Texture Evolution in Equal Channel Angular Extrusion (ECAE) Using Rate-Independent Crystal Plasticity with Rigid-Plastic Finite Element Method (결정 소성학과 강소성 유한요소해석을 연계한 ECAE 공정에서의 변형 집합 조직 발달에 대한 연구)

  • Kim, Kyung-Jin;Yoon, Jeong-Whan;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.937-944
    • /
    • 2015
  • Recently, the change of mechanical properties and microstructural evolution during severe plastic deformation (SPD), such as Equal Channel Angular Extrusion (ECAE), has been the subject of intensive investigation because of the unique physical and mechanical properties of severely deformed materials. In this study, two types of ECAE processes were considered, dies with intersection angles ${\Phi}$ of $90^{\circ}$ and $120^{\circ}$, using experiments and simulations. The decoupled method, in which the rigid-plastic finite element method is incorporated with the rate-independent crystal plasticity model, was applied to predict the texture evolution in commercially pure aluminum during the ECAE processes with $120^{\circ}$ and $90^{\circ}$ dies. The simulated textures were compared with a measured texture via an EBSD OIM analysis. The comparison showed that the simulated textures generally were in good agreement with the experimentally measured texture.

Improvement of Sound Insulation at Low Frequencies Using Resilient Channel (탄성채널을 이용한 석고보드 건식벽체의 저주파 대역 차음성능 개선)

  • Kim, Kyung Ho;Jeon, Jin Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.94-99
    • /
    • 2017
  • Breaking the rigid connection between the two faces of the wall can significantly improve the sound transmission loss of the wall. This is usually achieved by resiliently mounting the gypsum board on one of the two faces of the wall using resilient channel. Resilient channel with less stiffness than that of air cavity could move the resonance frequency of the light-weight wall. So we can get higher sound transmission loss at low frequencies for light-weight wall using resilient channel. It's sound transmission loss is 17 dB higher than that of single stud wall, and 5 dB higher than that of double stud wall.

Endoscopic Management of Cranial Arachnoid Cysts Using Extra-Channel Method

  • Kim, Myung-Hyun;Jho, Hae-Dong
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.6
    • /
    • pp.433-436
    • /
    • 2010
  • Objective : Arachnoid cysts (ACs) can be cured by making the definite and wide communication between the cyst and arachnoid space using endoscopy, but often it is impossible only through the usual working-channel (intra-channel) procedures. We discuss and propose a more valuable endoscopic technique with the presentation of our series of cases. Methods : We treated 9 patients with cortical AC in various locations with extra-channel endoscopic techniques. The patients ranged in age from 3 years to 60 years (mean age, 37.2 yrs). The follow-up period ranged from 12 to 26 months (mean follow-up duration, 17.2 months). All patients had large AC compressing the adjacent brain with clinical symptoms or signs. The authors performed extensive fenestration via single burr hole with the aid of endoscope. Being bypassed the rigid endoscope, through the space between the shaft of endoscope and guiding cannula (extra-channel method), fenestration procedures were done in the dry fields. Results : Eight (88.9%) patients had been treated successfully with endoscope. One patient required shunt procedure. Among the eight patients who were treated with endoscopic procedure, 6 patients (66.7%) showed cyst reduction, and two (22.2%) showed disappearance of cyst. Conclusion : We suggest that extra-channel method will be simple and easy to perform using more valuable instruments with wider working area, and may promise better results compared to the conventional intra-channel endoscopic procedures.

The Lago Sofia Conglomerate : Debris Flow to Hyperconcentrated Flow Deposits in a Cretaceous Submarine Channel, Southern Chile

  • Choe, Moon-Young;Sohn, Young-Kwan;Jo, Hyung-Rae;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.289-300
    • /
    • 2002
  • The Lago Sofia conglomerates encased in the Cretaceous Cerro Toro Formation, southern Chile, represent a gigantic submarine channel system developed along a foredeep trough. The channel system consists of several tributaries along the trough margin and a trunk channel along the trough axis. Voluminous debris flows were generated ubiquitously along the tract of the submarine channel mainly by the failure of nearby channel banks or slopes. The flows transformed immediately into multiphase flows and resulted in very thick-bedded mass-flow deposits with a peculiar structure sequence. The mass-flow deposits commonly overlie fluted or grooved surfaces and consist of a lower division of clast-supported and imbricated pebble-cobble conglomerate with common basal inverse grading, and an upper division of clast- to matrix-supported and disorganized pebble conglomerate or pebbly mudstone with abundant intraformational clasts. The structure sequence suggests a temporal succession of a turbidity current, a bipartite hyperconcentrapted flow with active clast collisions near the flow base, and a cohesive debris flow probably with a rigid plug. The multiphase flow is interpreted to have resulted from transformation of clast-rich but cohesive debris flows. Cohesive debris flows appear to transform more easily into dilute flow types in subaqueous environments because they are apt to hydroplane. This is in contrast to the flow transitions in subaerial environments where noncohesive debris flows are dominant and difficult to hydroplane.